1. given:
csc(x) + sin(x)
2. definition of csc(x) :
1/sin(x) + sin(x)
3. combining fractions with a common denominator:
(1 + sin²(x))/sin(x)
4. expanding 1 = cos²(x) + sin²(x) :
(cos²(x) + sin²(x) + sin²(x))/sin(x)
5. simplifying:
(2 sin²(x) + cos²(x))/sin(x)
6. employing the same identity as in (4) :
(2 (1 - cos²(x)) + cos²(x))/sin(x)
7. expanding 2 (1 - cos²(x)) :
(2 - 2 cos²(x) + cos²(x))/sin(x)
8. simplifying:
(2 - cos²(x))/sin(x)
Answer:
Graph A
Step-by-step explanation:
I had this question in my class and got it right with answer A :')
Answer:
3.4
Step-by-step explanation:
3.4 is able to be converted into a fraction so it is rational.
Answer: The relation is a function.
Step-by-step explanation: Since there is one value of y for every value of x in (-2,4), (3,7), (0,8), (5,8), and (1,6), this relation is a function.
I hope this helps you out!
<em>The</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>p</em><em> </em><em>is</em><em> </em><em>1</em><em> </em><em>3</em><em>/</em><em>4</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>