Answer:
The molarity of the solution is 245, 2M.
Explanation:
We calculate the molarity, which is a concentration measure that indicates the moles of solute (in this case KCl03) in 1000ml of solution (1 liter):
0,25 L solution----- 61,3 moles of KCl03
1 L solution----x= (1 L solution x 61,3 moles of KCl03)/0,25 L solution
x=245, 2 moles of KCl03 --> <em>The molarity of the solution is 245, 2M</em>
<em></em>
Answer:
by filtering it with filter paper
Answer:
The partial pressure of CO is 5.54x10⁻⁴⁹atm. You shouldn't worry because it is very low pressure
Explanation:
First, the balanced reaction is:
CO + 1/2O₂ → CO₂
The energies of formation are:
ΔG(CO)=-137.168kJ/mol
ΔG(O₂)=0
ΔG(CO₂)=-394.359kJ/mol
The energy of the reaction is:

The expression for calculate the partial pressure of CO is:

Answer:
[CaCl₂·2H₂O] = 1.43 m
Explanation:
Molality is mol of solute / kg of solvent.
Mass of solvent = 40 g
Let's convert g to kg → 40 g / 1000 = 0.04 kg
Let's determine the moles of solute (mass / molar mass)
8.43 g / 146.98 g/mol = 0.057 mol
Molality = 0.057 mol / 0.04 kg → 1.43
- According to Pascal’s principle, for a certain fluid in a totally enclosed system, a change in pressure at a given point in the fluid is transferred to all points in the fluid, as well as to the enclosing walls.
- This is illustrated by the fact that the pressure inside an enclosed system is the same according to the relation [ pressure = force/area ]. Therefore, the change in pressure resulting from squeezing a ketchup bottle will be transferred equally to all parts of that bottle as well as its internal content.
- That’s how hydraulic machines, such as garbage trucks and hydraulic lifts function..