Answer:
Explanation:
magnetic field due to circular wire
= μ₀ i / 2r
i is current and r is radius of coil .
Magnetic fields due to inner coil
μ₀ x 20 / (2 x 9.5 x 10⁻²)
Magnetic field due to outer coil
= μ₀ x I / (2 x 19 x 10⁻²) , I is the current to be calculated
Total field
μ₀ x 20 /( 2 x 9.5 x 10⁻²) +μ₀ x I / (2 x 19 x 10⁻²) = 0
20 + I /2 = 0
I = - 40 A
Current required is 40 A , and it will be in opposite direction.
Answer:
The answer is A/B, they're the same answer anyways.
Explanation:
Chromatic aberration is the result when the lens fail to focus all the colors on the same point. The light then focuses in different points,and could lead to causing two images at once. The main culprit of this is usually dispersion.
The moment of inertia is the rotational analog of mass, and it is given by
the product of mass and the square of the distance from the axis.
- The moment of inertia changes as the position of the weight is changed, which indicates that; statement is incorrect
Reasons:
The weight on each arm that have adjustable positions can be considered as point masses.
The moment of inertia of a point mass is <em>I</em> = m·r²
Where;
m = The mass of the weight
r = The distance (position) from the center to which the weight is adjusted
Therefore;
The moment of inertia, <em>I </em>∝ r²
Which gives;
Doubling the distance from the center of rotation, increases the moment of inertia by factor of 4.
Therefore, the statement contradicts the relationship between the radius of rotation and moment of inertia.
Learn more about moment of inertia here:
brainly.com/question/4454769
Answer:
(B) 13.9 m
(C) 1.06 s
Explanation:
Given:
v₀ = 5.2 m/s
y₀ = 12.5 m
(A) The acceleration in free fall is -9.8 m/s².
(B) At maximum height, v = 0 m/s.
v² = v₀² + 2aΔy
(0 m/s)² = (5.2 m/s)² + 2 (-9.8 m/s²) (y − 12.5 m)
y = 13.9 m
(C) When the shell returns to a height of 12.5 m, the final velocity v is -5.2 m/s.
v = at + v₀
-5.2 m/s = (-9.8 m/s²) t + 5.2 m/s
t = 1.06 s
Answer:
The inlet velocity is 21.9 m/s.
The mass flow rate at reach exit is 1.7 kg/s.
Explanation:
Given that,
Mass flow rate = 2 kg/s
Diameter of inlet pipe = 5.2 cm
Fifteen percent of the flow leaves through location (2) and the remainder leaves at (3)
The mass flow rate is

We need to calculate the mass flow rate at reach exit
Using formula of mass



We need to calculate the inlet velocity
Using formula of velocity

Put the value into the formula


Hence, The inlet velocity is 21.9 m/s.
The mass flow rate at reach exit is 1.7 kg/s.