Answer:
4.9 m/s²
Explanation:
Draw a free body diagram. There are two forces on the object:
Weight force mg pulling straight down,
and normal force N pushing perpendicular to the plane.
Sum the forces in the parallel direction.
∑F = ma
mg sin θ = ma
a = g sin θ
a = (9.8 m/s²) (sin 30°)
a = 4.9 m/s²
Answer:
The amount of caffeine left after one half life of 5 hours is 15 oz.
Explanation:
Half life is the time taken for a radioactive substance to degenerate or decay to half of its original size.
The half life of caffeine is 5 hours. So ingesting a 30 oz, this would be reduced to half of its size after the first 5 hours.
So that:
After one half life of 5 hours, the value of caffeine that would be left is;
= 15 oz
The amount of caffeine left after one half life of 5 hours is 15 oz.
It would be 17 m/s
If we use
V2 = V1 + a*t
Sub in 5 for v1
2m/s*2 for a
And
6 for t
That should give you the answer.
Answer:

Explanation:
The period of a simple pendulum is given by:

where
L is the length of the pendulum
g is the acceleration of gravity
From this equation we can write

Taking the square of this equation, we get:

So we see that
is proportional to L and inversely proportional to g. So, we can write:

So the only correct option is

Answer:
They experience the same magnitude impulse
Explanation:
We have a ping-pong ball colliding with a stationary bowling ball. According to the law of conservation of momentum, we have that the total momentum before and after the collision must be conserved:
where is the initial momentum of the ping-poll ball
is the initial momentum of the bowling ball (which is zero, since the ball is stationary)
is the final momentum of the ping-poll ball
is the final momentum of the bowling ball
We can re-arrange the equation as follows or
which means (1) so the magnitude of the change in momentum of the ping-pong ball is equal to the magnitude of the change in momentum of the bowling ball.
However, we also know that the magnitude of the impulse on an object is equal to the change of momentum of the object:
(2) therefore, (1)+(2) tells us that the ping-pong ball and the bowling ball experiences the same magnitude impulse: