The moment of inertia of a point mass about an arbitrary point is given by:
I = mr²
I is the moment of inertia
m is the mass
r is the distance between the arbitrary point and the point mass
The center of mass of the system is located halfway between the 2 inner masses, therefore two masses lie ℓ/2 away from the center and the outer two masses lie 3ℓ/2 away from the center.
The total moment of inertia of the system is the sum of the moments of each mass, i.e.
I = ∑mr²
The moment of inertia of each of the two inner masses is
I = m(ℓ/2)² = mℓ²/4
The moment of inertia of each of the two outer masses is
I = m(3ℓ/2)² = 9mℓ²/4
The total moment of inertia of the system is
I = 2[mℓ²/4]+2[9mℓ²/4]
I = mℓ²/2+9mℓ²/2
I = 10mℓ²/2
I = 5mℓ²
Answer:
The reason is because both are exposed to a virtually infinite heat sink, due to the virtually infinite mass and of the surrounding environment, compared to the sizes of either the cup or the kettle such that the equilibrium temperature,
reached is the same for both the cup and the kettle as given by the relation;

Due to the large heat sink, T₂ - T₁ ≈ 0 such that the temperature of the kettle and that of the cup will both cool to the temperature of the environment
Explanation:
Geostrophic winds blows parallel to the isobars. That is because the Coriolis force and pressure gradient force ( PGF ) are in balance. But near the surface the friction can act to change the direction of the wind and to slow it down. Coriolis force decreases at the surface and PGF stays the same. The difference in terrain conditions affects how much friction is exerted. Hills and forests force the wind to change direction more than flat areas. Answer: Friction reduces the speed so Coriolis is weakened.
4.096. You just have to multiply 1.6 three times. V=s^3