Answer:
27.1 m/s
Explanation:
Given that at a race car driving event, a staff member notices that the skid marks left by the race car are 9.06 m long. The very experienced staff member knows that the deceleration of a car when skidding is -40.52 m/s2.
Using third equation of motion,
V^2 = U^2 + 2aS
Since the car is decelerating, the final velocity V = 0
Substitute all the parameter into the equation above,
0 = U^2 - 2 * 40.52 * 9.06
U^2 = 734.22
U = 
U = 27.096
U = 27.1 m/s approximately
Therefore, the staff member can estimate for the original speed of the race car to be 27.1 m/s if it came to a stop during the skid
Answer:
Light of a shorter wavelength should be used.
Explanation:
This is studied in the phenomenon called photoelectric effect, in which light is able to release electrons from a metal, said electrons are called photoelectrons .
The experiments that have been carried out show that <u>increasing or decreasing the intensity of the light will not cause the photoelectrons to be emitted</u>, what will cause the photoelectrons to be emitted is to increase the frequency of the incident light.
And a higher frequency corresponds to a shorter wavelength according to the equation:

(where
is frequency,
the speed of light, and
the wavelength)
So the answer is that the wavelength of the light must be shortened to cause the emission of electrones.
Answer:
4.25 J
Explanation:
Given that
mass of plastic ball = 11 g
Mass of plastic ball = 0.011 kg
velocity of ball = 29 m/s
We know that from work power energy theorem

We know that kinetic energy of moving mass given as

Now by pitting the values


KE= 4.25 J
So the work done on the ball is 4.25 J
0.495 m/s
Explanation
the formula for the terminal velocity is given by:
![\begin{gathered} v=\sqrt[]{\frac{2mg}{\sigma AC}} \\ \text{where} \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20v%3D%5Csqrt%5B%5D%7B%5Cfrac%7B2mg%7D%7B%5Csigma%20AC%7D%7D%20%5C%5C%20%5Ctext%7Bwhere%7D%20%5C%5C%20%20%5Cend%7Bgathered%7D)
m is the mass
g is 9.81 m/s²
ρ is density
A is area
C is the drag coefficient
then
Step 1
Let's find the mass

now, replace
![\begin{gathered} v=\sqrt[]{\frac{2mg}{\sigma AC}} \\ v=\sqrt[]{\frac{2(0.002kg)(9.81\text{ }\frac{m}{s^2})}{(2\cdot10^3\frac{\operatorname{kg}}{m^3})(0.0001m^2)0.8}} \\ v=\sqrt[]{\frac{0.03924\frac{\operatorname{kg}m}{s^2}}{0.16\frac{\operatorname{kg}}{m^{}}}} \\ v=\sqrt[]{0.2452\frac{m^2}{s^2}} \\ v=0.495\text{ m/s} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20v%3D%5Csqrt%5B%5D%7B%5Cfrac%7B2mg%7D%7B%5Csigma%20AC%7D%7D%20%5C%5C%20v%3D%5Csqrt%5B%5D%7B%5Cfrac%7B2%280.002kg%29%289.81%5Ctext%7B%20%7D%5Cfrac%7Bm%7D%7Bs%5E2%7D%29%7D%7B%282%5Ccdot10%5E3%5Cfrac%7B%5Coperatorname%7Bkg%7D%7D%7Bm%5E3%7D%29%280.0001m%5E2%290.8%7D%7D%20%5C%5C%20v%3D%5Csqrt%5B%5D%7B%5Cfrac%7B0.03924%5Cfrac%7B%5Coperatorname%7Bkg%7Dm%7D%7Bs%5E2%7D%7D%7B0.16%5Cfrac%7B%5Coperatorname%7Bkg%7D%7D%7Bm%5E%7B%7D%7D%7D%7D%20%5C%5C%20v%3D%5Csqrt%5B%5D%7B0.2452%5Cfrac%7Bm%5E2%7D%7Bs%5E2%7D%7D%20%5C%5C%20v%3D0.495%5Ctext%7B%20m%2Fs%7D%20%5Cend%7Bgathered%7D)
hence, the answer is 0.495 m/s