The family of electromagnetic waves ranges from the Long Radio waves to the gama rays.
All of that contain electromagnetic energy and move at the speed of light.
But what distinguish one from another is their wavelengh.
Or, if you like, its counterpart: their frequency. (as can be seen in the equation c = λ . f where c is the speed of light, λ is the wavelengh and f is the frequency).
The shorter the wavelengh (the greater the frequency) more powerful (more energy it contains) is the electromagnetic wave.
From all the different kinds of electromagnetic waves of the spectrum, the less powerful (less energetic) are the Long Radio waves (λ in metres) and the more powerful ones are the gama rays (λ in
m).
:-)
with the same generator, so the only factor for producing
the slectric field is only the speed. The faster the rotational speed of the
generator the greater it produce electric field. So the sequence is 3000 rpm
< 3200 rpm < 3400 rpm < 3600 rpm
Jennifer runs 5 miles east, then stops to take a break. after her break, she continues running 4 more miles east.
In this the total distance she covers is 9 miles and the total displacement is also the same as the distance that is 9 miles.
<h3>What is the difference between distance and displacement?</h3>
Displacement is the shortest distance between initial and final position, or we can say it is the straight-line distance between initial and final position.
Whereas distance is considered as the total path length covered from initial position till the final position. The Displacement of a body is always less than or equal to the distance.
Displacement can be zero in case the initial and final positions coincide, but distance can never be zero.
To know more about distance and displacement, visit:
brainly.com/question/3243551
#SPJ4
Answer:
B.
It will be greater than 10 J.
Explanation:
The total mechanical energy of an object is the sum of its potential energy (PE) and its kinetic energy (KE):
E = PE + KE
According to the law of conservation of energy, when there are no frictional forces on an object, its mechanical energy is conserved.
The potential energy PE is the energy due to the position of the object: the highest the object above the ground, the highest its PE.
The kinetic energy KE is the energy due to the motion of the object: the highest its speed, the largest its KE.
Here at the beginning, when it is at the top of the roof, the baseball has:
PE = 120 J
KE = 10 J
So the total energy is
E = 120 + 10 = 130 J
As the ball falls down, its potential energy decreases, since its height decreases; as a result, since the total energy must remain constant, its kinetic energy increases (as its speed increases).
Therefore, when the ball reaches the ground, its kinetic energy must be greater than 10 J.