Answer:
It means...
Explanation:
The mechanical advantage of a machine is 4. Mechanical advantage MA is the ratio of output (generated by the machine) force to input (applied to the machine) force. So MA = 4 means that for example if you apply 100 N then your machine will multiply that force and generate 400 N.
If the atoms that share electrons have an unequal attraction for electrons, the bond is called a Polar covalent bond.
<h3><u>Explanation:</u></h3>
A covalent chemical bond is formed in case of two different non-metals when one or more electron pairs are shared between bonding atoms. A difference in electronegativity of subsequent atoms of a covalent bond leads to formation of a small net charge around nucleus of each atom, pulling the shared electrons to one side of the bond, to the nucleus which has higher electronegativity.
HCl is an example of polar covalent bond and the HCl bond has Chlorine more electronegative. The bonding electrons are more close to Cl than H and hence Cl is partially negatively charged than H which has partial positive charge (HCl bond :
). When electrons shared in a covalent bond have equal attraction, the bond is a Non-Polar covalent bond.
Bohr, he invented the Bohr model which is the basis for the beginning of quantum physics.
Given that:
Distance , s = 18.5 m
Velocity , v = 3.85 m/s
Time , t =?
Since,
Velocity = distance/time
or
Time= distance/velocity
time= 18.5/ 3.85
time= 4.8 s
So the time elapse between the release of the ball and the ball passing home plate is 4.8 seconds.
(a) For the work-energy theorem, the work done to lift the can of paint is equal to the gravitational potential energy gained by it, therefore it is equal to

where m=3.4 kg is the mass of the can, g=9.81 m/s^2 is the gravitational acceleration and
is the variation of height. Substituting the numbers into the formula, we find

(b) In this case, the work done is zero. In fact, we know from its definition that the work done on an object is equal to the product between the force applied F and the displacement:

However, in this case there is no displacement, so d=0 and W=0, therefore the work done to hold the can stationary is zero.
(c) In this case, the work done is negative, because the work to lower the can back to the ground is done by the force of gravity, which pushes downward. Its value is given by the same formula used in part (a):
