Answer:
11.25 amps
Explanation:
For transformers, the magnetic flux

Therefore;

Ф = Фmax (cosωt) = 0.21·(cos(5·t))
From Faraday's law of induction, we have;
ε = -N × dΦ/dt
Which gives;
dΦ/dt = -1.05(sin (5t)
)
ε = -N × dΦ/dt = -50× -1.05(sin (5t)
)
ε = 52.5(sin (5t)
)
I = ε/R = 52.5(sin (5t)
)/3.3 = 15.9091(sin (5t)
) amps
The peak current is therefore = 15.9091 amps
The rms current = Peak current /√2 = 15.9091/(√2) = 11.25 amps.
Answer:
Both A and B
Explanation:
The interaction of magnetic fields and armature results into a rotational force of the armature hence turning motion. It's important to note that you will always need two magnetic fields in order to experience the force since one magnetic field is at the rotating armature and another at the casing. Considering the arguments of these two technicians, both of them are correct in their arguments.
The calculated magnitude is 6.73 x 10³ V/m.
AMU is described as being one-twelfth the mass of a carbon-12 atom (12C). C makes up more than 98% of the carbon that can be found in nature, making it the most prevalent isotope. The magnitude of the field is the change in potential across a small distance in the indicated direction divided by that distance.
Potential difference = 8.20 kV= 8.20 x 10³ V
radius= 19.4/100=0.194 m
total distance that is circumference of the circle= 2πr =2 x 3.14 x 0.194
= 1.218 m
therefore Magnitude= 8.20 x 10³ / 1.218
=6.73 x 10³ V/m
Learn more about Magnitude here-
brainly.com/question/15681399
#SPJ9
Answer:
1) a substance made by mixing other substances together.
2) diverse in character or content.
3) of the same kind; alike.
4) a means of solving a problem or dealing with a difficult situation.
5) a homogeneous noncrystalline substance consisting of large molecules or ultramicroscopic particles of one substance dispersed through a second substance. Colloids include gels, sols, and emulsions; the particles do not settle, and cannot be separated out by ordinary filtering or centrifuging like those in a suspension.
The one that would explain why the two groups of scientists got different results is :
They had different specialties and interpreted their data differently
Probably one analyze it with x theory and the other use y theory
hope this helps