Answer:
63.53% yield
Explanation:
The balanced equation for this reaction is 2NaCl + H2O -> 2NaOH +Cl2
First we must find the limiting reactant
From NaCl we can only produce 6.06 grams of Cl2 in <u>theory</u>
From H20 we can only produce 38.995 grams in theory
so we know NaCl is the limiting
% yield is (Actual/Theoretical) x100 so
(3.85/6.06)x100= 63.53% yield
Carbon oxides (monoxide, dioxide) are gases :)
Answer:
a) C6H5COOH + H2O ↔ H3O+ + C6H5COO-
b) [ H3O+ ] = 2.517 E-3 M
c) pH = 2.599
Explanation:
a) balanced equation:
C6H5COOH + H2O ↔ H3O+ + C6H5COO-
⇒ Ka = ( [ H3O+ ] * [ C6H5COO- ] ) / [ C6H5COOH ] = 6.5 E-5
mass balance:
0.10 m = [ C6H5COO- ] + [ C6H5COOH ].....(1)
charge balance:
[ H3O+ ] = [ C6H5COO- ] + [ OH- ] .......[ OH- ] : comes from water, it's not significant
⇒ [ H3O+ ] = [ C6H5COO- ] .........(2)
b) (2) in (1):
⇒ 0.10 M = [ H3O+ ] + [ C6H5COOH ]
⇒ [ C6H5COOH ] = 0.10 - [ H3O+ ]
⇒ Ka = [ H3O+ ]² / ( 0.1 - [ H3O+ ] ) = 6.5 E-5
⇒ [ H3O+ ]² + 6.5 E-5 [ H3O+ ] - 6.5 E-6 = 0
⇒ [ H3O+ ] = 2.517 E-3 M
c) pH = - log [ H3O+ ]
⇒ pH = - Log ( 2.517 E-3 )
⇒ pH = 2.599
<h3><u>Answer;</u></h3>
<em><u> = 48,828.125 mi/hr²</u></em>
<h3><u>Explanation and solution</u>;</h3>
- <em><u>Centripetal acceleration is the rate of change of angular velocity. Centripetal acceleration occurs towards the center of the circular path along the radius of the circular path</u></em>.
- Centripetal acceleration is given by; <em>V²/r ; </em>
<em>V = 125 mi/h and r = 0.320 miles </em>
- <em>Thus; centripetal acceleration = 125²/0.320 </em>
=15625/0.320
<em><u> = 48,828.125 mi/hr²</u></em>
The change in pressure over a given distance is defined as a pressure gradient. The strength of this pressure gradient determines how fast the wind moves from higher pressure toward lower pressure. A stronger pressure gradient will cause stronger winds, as shown in Figure 2. >> Balanced in the vertical by the force of gravity