M = mass of the larger fish =5kg
<span>V = velocity of the larger fish =10m/s</span>
<span>m = mass of the smaller fish =2kg</span>
<span>v = velocity of the smaller fish =10m/s
</span>formula=
<span>MV = mv
5kg*10m/s=2kg*10m/s
biggern mass fish has more momentum
hope this helps
</span>
Answer:
option C (1 and 4)
Explanation:
Like poles repel each other, unlike poles attract each other
Answer:
mass of the fish is 8.11 kg
Explanation:
As we know that the frequency of oscillation of spring block system is given as

here we know that the reading of scale varies from 0 to 155 N from length varies from x = 0 to x = 10 cm
Now we have


so now we have


so mass of the fish is 8.11 kg
The force that prevents motion when the surfaces of two objects come into contact is known as friction. Friction decreases a machine's mechanical advantage, or, to put it another way, reduces the output to input ratio.
<h3>How can I figure out the frictional force?</h3>
The resistive force of friction (Fr) divided by the normal or perpendicular force (N) pushing the objects together yields the coefficient of friction (fr), which is a numerical value.
The formula fr = Fr/N serves as a representation of it.
Therefore, 100N of force is needed to move an item with a mass of 50 kg.
It will accelerate by 10 m/s2.
If a substance's mass does not change over time, friction cannot affect it. Instead, friction can be affected in a variety of ways by an object's mass.
To Learn more About Friction, Refer:
brainly.com/question/24338873
#SPJ13
Answer:
a) F = 2250 Ib
b) F = 550 Ib
c) new max force ( F newmax ) = 2850 Ib
Explanation:
A) The force the wall of the elevator shaft exert on the motor if the elevator starts from rest and goes up
max capacity of elevator = 24000 Ibs
counterweight = 1000 Ibs
To calculate the force (F) :
we first calculate the Tension using this relationship
Counterweight (1000) - T = ( 1000 / g ) ( g/4 )
Hence T = 750 Ib
next determine F
750 + F - 2400 = 2400 / 4
hence F = 2250 Ib
B ) calculate Tension first
T - 1000 = ( 1000/g ) ( g/4)
T = 1250 Ib
F = 2400 -1250 - 2400/ 4
F = 550 Ib
C ) determine design limit
Max = 2400 * 1.2 = 2880 Ib
750 + new force - 2880 = 2880 / 4
new max force ( F newmax ) = 2850 Ib