Answer:
<h2>42.67N</h2>
Explanation:
Step one:
<u>Given </u>
mass m= 0.32kg
intital velocity, u= 14m/s
final velocity v= 22m/s
time= 0.06s
Step two:
<u>Required</u>
Force F
the expression for the force is
F=mΔv/t
F=0.32*(22-14)/0.06
F=(0.32*8)/0.06
F=2.56/0.06
F=42.67N
The average force exerted on the bat 42.67N
Answer:
A) T.
Explanation:
Kepler's third law states that the orbital period (T) of a satellite is related with the radius (R) and the mass of the object (M) it orbits:
So the orbital period is independent of the mass of the satellite, that means no matter the mass every satellite at a radius R around the earth have an orbital period A.
Answer:
true
Explanation:
this the nucleus is located at the centre and contains protons and neutrons
Refer to the diagram shown below.
Let m = the mass (g) of the door.
Let v = the launch velocity
Let u = the velocity of the door after impact.
Elastic impact (rubber ball):
The rubber ball bounces off the door with presumably elastic impact, which means that both momentum and kinetic energy are conserved.
Conservation of momentum requires that
400v = -400v + mu
Therefore

Inelastic impact (clay):
The clay sticks to the door after impact.
Conservation of momentum requires that
400g = (m+400)u
Therefore

When we compare magnitudes of u for the door, we find that

Clearly, the elastic impact creates a greater value of u for the door.
Answer:
The rubber ball creates a larger impulse to the door because the nature of its impact is approximately elastic.
Answer:
The bone marrow produces stem cells, the building blocks that the body uses to make the different blood cells. The erythropoietin sends a message to the stem cells telling more of them to develop into red blood cells.