Answer:
The length of segment AC is two times the length of segment A'C'
Step-by-step explanation:
we know that
If two figures are similar, then the ratio of its corresponding sides is proportional and this ratio is called the scale factor
Let
z ----> the scale factor
A'C' ----> the length of segment A'C'
AC ----> the length of segment AC
so
we have that
---> the dilation is a reduction, because the scale factor is less than 1 and greater than zero
substitute

therefore
The length of segment AC is two times the length of segment A'C'
Step-by-step explanation:



= -4c + 14
hence -4c + 14 is the answer ...
hope it helped !!
The standard form of a quadratic equation is

, while the vertex form is:

, where (h, k) is the vertex of the parabola.
What we want is to write

as

First, we note that all the three terms have a factor of 3, so we factorize it and write:

.
Second, we notice that

are the terms produced by

, without the 9. So we can write:

, and substituting in

we have:
![\displaystyle{ y=3(x^2-6x-2)=3[(x-3)^2-9-2]=3[(x-3)^2-11]](https://tex.z-dn.net/?f=%5Cdisplaystyle%7B%20y%3D3%28x%5E2-6x-2%29%3D3%5B%28x-3%29%5E2-9-2%5D%3D3%5B%28x-3%29%5E2-11%5D)
.
Finally, distributing 3 over the two terms in the brackets we have:
![y=3[x-3]^2-33](https://tex.z-dn.net/?f=y%3D3%5Bx-3%5D%5E2-33)
.
Answer:
Answer:
where is the problem
Step-by-step explanation:
Answer is c just in place of x subst x values and your y will come out