John Dalton
"matter cannot be created nor destroyed or divided into smaller particles"
<u>Answer:</u>
It is the expression of Charles' Law.
<u>Explanation:</u>
The given expression V1T2 = V2T1 is the formula for the Charles' Law.
A special case of an ideal gas is named as the Charles' Law. This law applies to ideal gases only which are at constant pressure.
According to this law, the volume of a fixed mass of a gas is directly proportional to its temperature and is given by:
V1T2 = V2T1
a. volume of NO : 41.785 L
b. mass of H2O : 18 g
c. volume of O2 : 9.52 L
<h3>Further explanation</h3>
Given
Reaction
4 NH₃ (g) + 5 O2 (g) → 4 NO (g) + 6 H2O (l)
Required
a. volume of NO
b. mass of H2O
c. volume of O2
Solution
Assume reactants at STP(0 C, 1 atm)
Products at 1000 C (1273 K)and 1 atm
a. mol ratio NO : O2 from equation : 4 : 5, so mo NO :

volume NO at 1273 K and 1 atm

b. 15 L NH3 at STP ( 1mol = 22.4 L)

mol ratio NH3 : H2O from equation : 4 : 6, so mol H2O :

mass H2O(MW = 18 g/mol) :

c. mol NO at 1273 K and 1 atm :

mol ratio of NO : O2 = 4 : 5, so mol O2 :

Volume O2 at STP :
