1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
777dan777 [17]
3 years ago
9

A hurricane is a type of serve cyclone which statement best explains how a hurricane forms

Chemistry
1 answer:
storchak [24]3 years ago
7 0

Answer:

Hurricanes form over the warm ocean water of the tropics

Explanation:

when war, moist air over the water rises , it is replaced by cooler air

You might be interested in
Use the Henderson-Hasselbalch equation, eq. (3), to calculate the pH expected for a buffer solution prepared from this acid and
notka56 [123]

Answer:

pH=4.56

Explanation:

Hello there!

In this case, given the Henderson-Hasselbach equation, it is possible for us to compute the pH by firstly computing the concentration of the acid and the conjugate base; for this purpose we assume that the volume of the total solution is 0.025 L and the molar mass of the sodium base is 234 - 1 + 23 = 256 g/mol as one H is replaced by the Na:

n_{acid}=\frac{0.2g}{234g/mol}=0.000855mol\\\\n_{base}= \frac{0.2g}{256g/mol}=0.000781mol

And the concentrations are:

[acid]=0.000855mol/0.025L=0.0342M

[base]=0.000781mol/0.025L=0.0312M

Then, considering that the Ka of this acid is 2.5x10⁻⁵, we obtain for the pH:

pH=-log(2.5x10^{-5})+log(\frac{0.0312M}{0.0342M} )\\\\pH=4.60-0.04\\\\pH=4.56

Best regards!

6 0
3 years ago
At 25C the density of water is 0.997044 g/mL. Use this value to determine the percent error for the two density measurements
Gnom [1K]

Given that:

  • At 25C the density of water is 0.997044 g/mL.

From the information attached below, we have the following parameters.

The density of water calculation using a bottle.

     Initial volume of    Final volume of    Mass of water   Density (g/mL)

     burette (mL)        burette   (mL)       dispensed (g)

 

Sample 1      2.33                     7.34                   5.000               -----

Sample 2      7.34                    12.37                 5.025                -----

Sample 3      12.37                   18.50                6.112                  -----

Sample 4      18.50                  24.57               6.064                 -----

Sample 5     24.57                  31.31                6.720                  -----

The first thing we need to do is to determine the change in the volume of the burette in each sample from the above information.

  • The change in the volume of the burette = (final volume - the initial volume) mL

Sample 1:

= (7.34 - 2.33) mL

= 5.01 mL

Sample 2:

= (12.37 - 7.34) mL

= 5.03 mL

Sample 3:

= (18.50 - 12.37) mL

= 6.03 mL

Sample 4:

= (24.57 - 18.50) mL

= 6.07 mL

Sample 5:

= (31.31 - 24.57) mL

= 6.74 mL

The mass of the water dispersed in sample 1 is given as = 5.000 g

Using the relation for calculating the density of each, we have:

Sample 1

\mathbf{density = \dfrac{mass}{volume}}

\mathbf{density = \dfrac{5.01 g}{5.000 ml}}

density = 0.998004 g/ml

Sample 2:

\mathbf{density = \dfrac{5.025 g}{5.03ml}}

density = 0.999006 g/ml

Sample 3:

\mathbf{density = \dfrac{6.112 g}{6.13ml}}

density = 0.997064 g/ml

Sample 4:

\mathbf{density = \dfrac{6.064 \ g}{6.07 \ ml}}

density = 0.999012 g/ml

Sample 5:

\mathbf{density = \dfrac{6.720 \ g}{6.74 \ ml}}

density = 0.997033 g/ml

Thus, the average density for all the samples is:

\mathbf{= \dfrac{( 0.998004 + 0.999006 + 0.997064 +   0.999012  + 0.997033  )}{5}}

= 0.998024

∴

The percentage error for the two densities measurement is:

=\dfrac{ (experimental \  value -theoretical  \ value)\times 100 }{theoretical  \ value}

Given that the theoretical value = 0.997044 g/ml

Then;

\mathbf{= \dfrac{(0.998024 - 0.997044)100}{0.997044}}

= 0.0983%

Therefore, we can conclude that the percent error for the two density measurements is 0.0983%

Learn more about density here:

brainly.com/question/24386693?referrer=searchResults

4 0
2 years ago
How far can sound travel through rubber per second?
Romashka-Z-Leto [24]
Sound waves need to travel through a medium such as a solid, liquid, or gas. The sound waves move through each of these mediums by vibrating the molecules in the matter. The molecules in solids are packed very tightly. Liquids are not packed as tightly as solids. And gases are very loosely packed. The spacing of the molecules enables sound to travel much faster through a solid than a gas. Sound travels about four times faster and farther in water than it does in air. This is why whales can communicate over huge distances in the oceans. Sound waves travel about thirteen times faster in wood than air. They also travel faster on hotter days as the molecules bump into each other more often than when it is cold.
8 0
3 years ago
Read 2 more answers
A 150.0 mL solution of 2.888 M strontium nitrate is mixed with 200.0 mL of a 3.076 M sodium fluoride solution. Calculate the mas
Lelechka [254]

Answer:

Mass SrF2 produced = 38.63 g SrF2 produced

[Na^+]:  = 1.758 M

[NO3^-]:  = 1.238 M

[Sr^2+] = 0.3589 M

[F^-] = 2.36*10^-5 M

Explanation:

Step 1: Data given

Volume of 2.888M strontium nitrate = 150.0 mL = 0.150 L

Volume of 3.076 M sodium fluoride = 200.0 mL = 0.200 L

Step 2 : The balanced equation

Sr(NO3)2(aq) + 2NaF(aq) → SrF2(s) + 2NaNO3(aq) → Sr2+ + 2F- + 2

Step 3: Calculate moles strontium nitrate

Moles Sr(NO3)2 = Molarity * volume  

Moles Sr(NO3)2 = 2.888 M * 0.150 L

Moles Sr(NO3)2 = 0.4332 moles

Step 4: Calculate moles NaF

Moles NaF = 3.076 M * 0.200 L

Moles NaF = 0.6152 moles

It takes 2 moles F^- to precipitate 1 mole Sr^2+, so F^- is limiting.

Step 5: Calculate limiting reactant

For 1 mol of Sr(NO3)2 we need 2 moles of NaF to produce 1 mol of SrF2 and 2 moles of NaNO3

NaF is the limiting reactant. It will completely be consumed (0.6152 moles).

Sr(NO3)2 is in excess. There will react 0.6152/2 = 0.3076 moles

Moles Sr^2+ precipitated by F^- = 0.3076

There will remain 0.4332 - 0.3076 = 0.1256 moles of Sr(NO3)2

Moles Sr^2+ no precipitated (left over) = 0.1256 moles

Step 6: Calculate moles SrF2  

For 1 mol of Sr(NO3)2 we need 2 moles of NaF to produce 1 mol of SrF2 and 2 moles of NaNO3

For 0.6152 moles NaF we have 0.6152/2 = 0.3076 moles of SrF2

Mass SrF2 produced:  0.3076 mol * 125.6 g/mol = 38.63 g SrF2 produced

Step 7: Calculate concentration of [Na+] and [NO3-]

Since both Na^+ and NO3^- are spectator ions, and the final volume is 150 ml + 200 ml = 350 ml (0.350 L), the concentrations of Na^+ and NO3^- can be calculated as follows:

[Na^+]:  (200 ml)(3.076 M) = (350 ml)(x M) and x = 1.758 M

[NO3^-]:  (150 ml)(2.888 M)(2) = (350 ml)(x M) = 1.238 M

Step 8: Calculate [Sr^2+] and [F^-]

[Sr^2+] = 0.1256 moles/0.350 L = 0.3589 M

To find [F^-], one needs the Ksp for SrF2.  There are several values listed in the literature. I am using a value of 2x10^-10.

SrF2(s) <==> Sr^2+(aq) + 2F^-(aq)

Ksp = [Sr^2+][F^-]²

2x10^-10 = (0.3589)(x)²

x² = 5.57*10^-10

x = [F^-] = 2.36*10^-5 M

4 0
3 years ago
What is the main cause of any change of state?
svetoff [14.1K]

Answer:

Adding or removing energy from matter causes a physical change as matter moves from one state to another. For example, adding thermal energy (heat) to liquid water causes it to become steam or vapor (a gas). And removing energy from liquid water causes it to become ice (a solid).

6 0
4 years ago
Read 2 more answers
Other questions:
  • What can electrons hold
    9·1 answer
  • When a current is passed through a solution of salt water, sodium chloride decomposes according to the following reaction:
    15·2 answers
  • Which statement best explains the value of the Periodic Table
    14·2 answers
  • Give criteria in terms of temperature changes for exothermic and endothermic reactions
    10·1 answer
  • Which of the following are major influences on weather and climate? I. the cycling of water in and out of the atmosphere II. the
    14·2 answers
  • The most useful property of metalloids is their _____.
    6·1 answer
  • a sample of salt has 1.74 moles of sodium chloride. how many formula units of the ionic compound are in the sample?
    12·1 answer
  • MAX TEN MINUTES PLZZZZZ HURRY
    13·1 answer
  • The diameter of a circle is 17 cm. Find its circumference in terms of \piπ.
    5·1 answer
  • How many moles of nacl are needed to make 5.2l of a 2m solution
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!