The students have conducted an experiment to check their hypothesis on the thermal conductivity of two metals; Aluminum and steel. The experimental observations have been noted, and the next step based on the scientific procedure is to analyze the data.
Analysis of data suggests that; since the length of wax after 10 min is lower in Al than steel, aluminum is a better thermal conductor.
Ans B) Analyze the data
The pressure would increase. When the temperature change form cold to hot, the gas will find ways to escape from containment. Thus, if it cannot escape that pressure will keep on increasing as the temperature rises.
CaSO4(s) might be an improperly capitalized: CAsO4(S), CaSO4(S)
Balanced equation:
K2SO4(aq) + CaI2(aq) = CaSO4(s) + 2 KI(aq)
Reaction type: double replacement.
Answer:
Q = 233.42 J
Explanation:
Given data:
Mass of lead = 175 g
Initial temperature = 125.0°C
Final temperature = 22.0°C
Specific heat capacity of lead = 0.01295 J/g.°C
Heat absorbed by water = ?
Solution:
Heat absorbed by water is actually the heat lost by the metal.
Thus, we will calculate the heat lost by metal.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 22.0°C - 125.0°C
ΔT = -103°C
Q = 175 g × 0.01295 J/g.°C×-103°C
Q = -233.42 J
Heat absorbed by the water is 233.42 J.
Answer:
Iconic bonds don't burn easily
Explanation:
Covalent bonds are non metals. Covalent bond (sharing), low temp, low temp, burn easily, poor, polar covalent is good and non-polar covalent is bad.
Ionic - metals and nonmetals, ionic bond is when electrons are gained or lost, high temp, high temp, doesn't burn easily, good, good