Methane is a tetrahedral molecule where each C-H is kept as far away from the others as possible due to electron-electron repulsion, resulting in a bond angle of 109.5˚ (Technically 109˚ 28' but I would just use the decimal version if I were you).
Hope this helps!
Answer:
Its final temperature is 25.8 °C
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
There is a direct proportional relationship between heat and temperature. The constant of proportionality depends on the substance that constitutes the body as on its mass, and is the product of the specific heat by the mass of the body. So, the equation that allows calculating heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation (ΔT=Tfinal-Tinitial)
When a body transmits heat there is another that receives it. This is the principle of the calorimeter. Then the heat released by the compound will be equal to the heat obtained by the calorimeter.
In this case, you know:
- c= 3.55

- m=1.20 kg= 1200 g (1 kg=1000 g)
- Tfinal= ?
- Tinitial= 22.5 °C
Replacing:

Solving:

3.3=Tfinal - 22.5 C
3.3 + 22.5=Tfinal
Tfinal= 25.8 °C
<u><em>Its final temperature is 25.8 °C</em></u>
It should be about 0.586620881 kilograms
I think the answer is B.
I know the answer cant be A because a lot of metal that is new can be shiny.
C is incorrect because malleable means that it can be permanently bent out of shape ( which metal can be )
D is incorrect because a lot of metal can conduct electricity for example copper and brass can both conduct electricity
<span />
Formation of ammonia by nitrogen and hydrogen is habers process wher 28g N2 results in formation of 34g NH3
so 35g N2 will form 34*35/28=42.5g NH3 where it given that reaction takes place in excess of H2
N2+3H2 gives 2NH3