Answer:
T2 =21.52°C
Explanation:
Given data:
Specific heat capacity of sample = 1.1 J/g.°C
Mass of sample = 385 g
Initial temperature = 19.5°C
Heat absorbed = 885 J
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = Final temperature - initial temperature
885J = 385 g× 1.1 J/g.°C×(T2 - 19.5°C )
885 J = 423.5 J/°C× (T2 - 19.5°C )
885 J / 423.5 J/°C = (T2 - 19.5°C )
2.02°C = (T2 - 19.5°C )
T2 = 2.02°C + 19.5°C
T2 =21.52°C
Thats burning of glucose as fuel in the cells. It generates heat and is an exothermic reaction. In Mitochondria, which act as furnaces, the fuel helps generate heat for the cells of the body.
They will melt at the same rate because they contain the same matter
hope this helps and good luck on your project!!!!
Answer: The correct option is A.
Explanation: The given molecules are the molecules of same element.
These molecules are considered as diatomic species.
Polar molecules are the molecules in which some polarity is present in the bond. These molecules are formed when there is some difference in the electronegativities of the elements. Example: HCl
Non-polar molecules are the molecules where no polarity is present in the bond. These molecules are formed when there is no difference in the electronegativities of the elements. Example: 
The given molecules are non-polar in nature.
Hence, these molecules must be non-polar. So, the correct option is A.