It is also tripled, there is a rule to everything, whatever you do to one thing, you do the exact thing to the other. Hope this solves it :)
Answer:
time rising = 34 / 9.8 = 3.47 sec
total time in air = 2 * 3.47 sec = 6.94 sec
(time rising must equal time falling)
R = 17 m/s * 6.94 s = 118 m
Can also use range formula
R = v^2 sin (2 theta) / g
tan theta = 34 / 17 = 2
theta = 63.4 deg
2 theta = 126.9 deg
sin 126.9 = .8
v^2 = 17^2 + 34^2 = 1445 m^2/s^2
R = 1445 * .8 / 9.8 = 118 m agreeing with answer found above
Beginning when the bottom of the object first touches the water,
and as it descends and more and more of it goes under, the
buoyant force on it increases during that time.
As soon as the object is completely underwater, it doesn't matter
how deep under it is, the buoyant force on it remains the same.
<u>Answer</u>:
The greatest possible acceleration of the car is 
<u>Explanation</u>:



-------------(1)

----------------(2)
Solving the equation (1) and(2)








Next lets assume that the front wheels contact with the ground N_A = 0














Choosing the critical case



Explanation:
Missing Details. Most models can't incorporate all the details of complex natural phenomena.
Most Are Approximations. Most models include some approximations as a convenient way to describe something