Answer:
A
Explanation:
The next step would be precipitation falling
Answer:

Part 1

Part 2

Explanation:
Given that
Diameter,d=1 μm
Length ,l=2 μm
As we know that volume of cylinder given as



Surface area,A
A=π d l


Part 1

Part 2

think you messed up the symbol for resistor as resistors are measured in ohms where the symbol used for ohms is Greek omega
solving for average power in secondary coil:
average power =(current rms)^2*resistance⇒with a little algebra:
current rms=(√average power/resistance)
current rms=√160W/10Ω
current rms=4amps.
average power is also equal to current rms*voltage rms
with some algebra we can solve for voltage in the secondary wire:
voltage rms= average power/ current rms
voltage rms= 160W/4A
voltage rms=40Volts
now that we have voltage in the soecondary we can solve for the amount of turns in the secondary: Voltage secondary/voltage primary=number of turns in secondary/ number of turns in primary. using some algerbra we can solve for number of turns in secondary: (Voltage secondary/voltage primary)*number of turns in primary=number of turns in secondary
(40V/120V)*75turns=number of turns in secondary
number of turns in secondary=25turns
Answer:
hi iam 8 and a girl your hot
Explanation:
The component of the crate's weight that is parallel to the ramp is the only force that acts in the direction of the crate's displacement. This component has a magnitude of
<em>F</em> = <em>mg</em> sin(20.0°) = (15.0 kg) (9.81 m/s^2) sin(20.0°) ≈ 50.3 N
Then the work done by this force on the crate as it slides down the ramp is
<em>W</em> = <em>F d</em> = (50.3 N) (2.0 m) ≈ 101 J
The work-energy theorem says that the total work done on the crate is equal to the change in its kinetic energy. Since it starts at rest, its initial kinetic energy is 0, so
<em>W</em> = <em>K</em> = 1/2 <em>mv</em> ^2
Solve for <em>v</em> :
<em>v</em> = √(2<em>W</em>/<em>m</em>) = √(2 (101 J) / (2.0 m)) ≈ 10.0 m/s