Which one if you want independent variable meaning that means variable (often denoted by x ) whose variation does not depend on that of another.
Answer:
a) 
b)
c) 
d) Treat the humans as though they were points or uniform-density spheres.
Explanation:
Given:
- mass of Mars,

- radius of the Mars,

- mass of human,

a)
Gravitation force exerted by the Mars on the human body:

where:
= gravitational constant


b)
The magnitude of the gravitational force exerted by the human on Mars is equal to the force by the Mars on human.


c)
When a similar person of the same mass is standing at a distance of 4 meters:


d)
The gravitational constant is a universal value and it remains constant in the Universe and does not depends on the size of the mass.
- Yes, we have to treat Mars as spherically symmetric so that its center of mass is at its geometric center.
- Yes, we also have to ignore the effect of sun, but as asked in the question we have to calculate the gravitational force only due to one body on another specific body which does not brings sun into picture of the consideration.
Answer:
U = -3978.8 J
Explanation:
The work of the gravitational force U just depends of the heigth and is calculated as:
U = -mgh
Where m is the mass, g is the gravitational acceleration and h the alture.
for calculate the alture we will use the following equation:
h = L-Lcos(θ)
Where L is the large of the rope and θ is the angle.
Replacing data:
h = 12.2-12.2cos(58.4)
h = 5.8 m
Finally U is equal to:
U = -70(9.8)(5.8)
U = -3,978.8 J
Answer:
<h2>Virtual image</h2>
Explanation:
<h3>
<em>Virtual</em><em> </em><em>image</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>caught</em><em> </em><em>on</em><em> </em><em>a</em><em> </em><em>screen</em></h3>
<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>you</em><em>.</em>
<em>will</em><em> </em><em>give</em><em> </em><em>the</em><em> </em><em>brainliest</em><em>!</em>
<em>follow</em><em> </em><em>~</em><em>H</em><em>i</em><em>1</em><em>3</em><em>1</em><em>5</em><em>~</em>
5 seconds is a poor time to ask about, because the speed abruptly changes at exactly 5 seconds.
Up until that time, the speed has been 1 m/s. And then, at exactly 5 seconds, it becomes zero.
_________
It's also a poor question because speed is calculated from the distance covered, but the graph shows displacement, not distance. You can't really tell the distance covered from a displacement graph.
For example, if an object happens to be moving in a circle around the place where it started, then the total distance covered keeps increasing, but its displacement is constant.