Answer:
Accuracy
Explanation:
I think accuracy is more important. When it comes to vital organs in the body, the exactness of getting the measurement is paramount. Accuracy deals with getting very close, almost exact you may say, to a known standard. Precision on the other hand, deals with how easy a measurement can be retaken, reproduced or remade, irrespective of how far or close they are from the accepted norm.
From this, we can agree that precision neglects the most important factor, closeness or say, exactness. Precision isn't bothered by it. And while that can be excused in a few instances, it certainly can not be permitted when it comes to life, or organs of the body
Answer:
F = 2.49 x 10⁻⁹ N
Explanation:
The electrostatic force between two charged bodies is given by Colomb's Law:

where,
F = Electrostatic Force = ?
k = colomb's constant = 9 x 10⁹ N.m²/C²
q₁ = charge on proton = 1.6 x 10⁻¹⁹ C
q₂ = second charge = 1.4 C
r = distace between charges = 0.9 m
Therefore,

<u>F = 2.49 x 10⁻⁹ N</u>
Answer:
a) 17.49 seconds
b) 13.12 seconds
c) 2.99 m/s²
Explanation:
a) Acceleration = a = 1.35 m/s²
Final velocity = v = 85 km/h = 
Initial velocity = u = 0
Equation of motion

Time taken to accelerate to top speed is 17.49 seconds.
b) Acceleration = a = -1.8 m/s²
Initial velocity = u = 23.61\ m/s
Final velocity = v = 0

Time taken to stop the train from top speed is 13.12 seconds
c) Initial velocity = u = 23.61 m/s
Time taken = t = 7.9 s
Final velocity = v = 0

Emergency acceleration is 2.99 m/s² (magnitude)
Gamma rays then x rays then UVA rays then visible light then IR then radio waves (from highest to lowest frequency).
Answer:
1.
Upon analysis of the results, a hypothesis can be rejected or modified, but it can never be proven to be correct 100 percent of the time. For example, relativity has been tested many times, so it is generally accepted as true, but there could be an instance, which has not been encountered, where it is not true.
2.Mass is the amount of matter in a body, normally measured in grams or kilograms etc. Weight is a force that pulls on a mass and is measured in Newtons. So on Earth, Weight would be your (mass x acceleration( 9.8 ) . Density, there are lots of kinds of density I guess, but the one you are talking about is density = mass / volume. Density basically means how much mass is occupied in a specific volume or space. Different materials of the same size may have different masses because of its density. Density in this case is measured in kg / m^3 or kg / L or g / m^3 etc where the numerator is a unit of mass and the denominator a unit of volume.
3.The density of an object determines whether it will float or sink in another substance. An object will float if it is less dense than the liquid it is placed in. An object will sink if it is more dense than the liquid it is placed in.
4. An object will float if the gravitational (downward) force is less than the buoyancy (upward) force. So, in other words, an object will float if it weighs less than the amount of water it displaces. This explains why a rock will sink while a huge boat will float.
5.