Answer:
![[H^+]=0.00332M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.00332M)
Explanation:
Hello,
In this case, considering the dissociation of valeric acid as:

Its corresponding law of mass action is:
![Ka=\frac{[H^+][C_5H_9O_2^-]}{[HC_5H_9O_2]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH%5E%2B%5D%5BC_5H_9O_2%5E-%5D%7D%7B%5BHC_5H_9O_2%5D%7D)
Now, by means of the change
due to dissociation, it becomes:

Solving for
we obtain:

Thus, since the concentration of hydronium equals
, the answer is:
![[H^+]=x=0.00332M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dx%3D0.00332M)
Best regards.
Answer: -
The rate decreases as the concentration of the reactants decreases
Explanation: -
A reaction involves change of the reactants into products.
Initially there is only reactants. So the rate if reaction is high.
After some time there are products. So the amount of reactant is less.
Reactions involve collisions of reactant molecules. As the reactant amount decreases, collisions between the reactants decreases. As such the rate of reaction decreases with the progress of the reaction.
Answer:
The sphere on the left as it has more mass.
Explanation:
Inertia is the resistance to changes of motion.
I think the answer is yes