I think they can change into ions
Answer:
D. Grams liquid x mol/g x delta Hfreezing
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to reason that the stoichiometry used to calculate energy released when a mass of liquid freezes, involves the grams of the liquid, the molar mass of the liquid, as given in all the group choices, and the enthalpy of freezing because that is the process whereby a liquid goes solid.
In such a way, we infer that the correct factor would be D. Grams liquid x mol/g x delta Hfreezing which sometimes is the negative of the enthalpy of fusion as they are contrary processes.
Regards!
Answer:
C) ball rollinflown a hill
Explanation:
The question asks to identify the endothermic process in the list of options. By way of elimination, we have;
A) condensation of water on a wind shield of a car
Condensation is an exothermic process. That is, heat is given out as the gases change into the liquid state of matter.
B) formation of copper
This is an exothermic process. Capture of electrons by a cation is always exothermic.
C) ball rollinflown a hill
This is the correct option. Energy is absorbed by the ball as it moves on the hill
D) formation of ice from liquid water
Freezing is an example of exothermic reaction. Heat is given off to the surroundings.
E) oxide from copper and oxygen
Formation of metal oxides and most reactions involving oxygen are exothermic reactions,
Answer:
Potassium permanganate has a molar mass of 158.04 g/mol. This figure is obtained by adding the individual molar masses of <em><u>four oxygen atoms</u></em>, <em><u>one manganese atom</u></em> and <em><u>one potassium atom</u></em>
Explanation:
Answer:
Repulsive forces exist only when atoms are very close to each other. (3/14) "They [the atoms] will approach until both nuclei will simply shove each other because both of them are positive." The balance between the attraction and repulsion forces determines how close the atoms can get. The relationships between the magnitude and direction of repulsive and attractive forces. A stable state of a bond is when attractive forces balance repulsion forces. “A stable state between two atoms is when they attract each other with a force that equals the force that they repel each other.”