A white ring buoy appears<u> blue</u> because the blue plastic <u>absorbs</u> all colors of light except blue. Only the blue light <u>reflected from</u> the ring buoy passes through the blue plastic.
Question 1
To find centripetal acceleration, use the formula : centripetal acceleration = v^2/r
so answer would be (3.71)^2/42.85=0.32 (2d.p.)
Question 2
Force =ma
a= (9.98)^2/31.77=3.1350
Force= 3.1350 * 56.63 = 177.54 (2 d.p.)
A). Her distance traveled was (700m + 500m) = <em>1,200 meters</em>
B). Her displacement was (700m north + 500m south) = <em>200 meters north</em>
C). Her average speed = (distance covered) / (time to cover the distance)
Speed = (1,200 meters) / (15 seconds)
<em>Speed = 80 meters/second</em>
(Layne is an incredible walker ! That's about 179 miles per hour.)
(She walks 700m in 10 seconds. Usain Bolt runs only 100m in 10 seconds.)
D). Her averge velocity = (displacement) / (time)
Velocity = (200 meters north) / (15 seconds)
<em>Velocity = (13 and 1/3) m/s north</em>
(This is only about 33% faster than Usain Bolt, if he went straight instead of doubling back, and if he could keep it up for 200 meters instead of only 100 meters.)
Answer:
3/4 of 12 = 16
3/4 of 24 = 32
Those are the answers based on how your question sounded
Explanation:
Answer:
Maximum speed, v = 36 m/s
Explanation:
Given that,
The radius of the curved road, r = 120 m
Road is at an angle of 48 degrees. We need to find the maximum speed of stay on the curve in the absence of friction. On a banked curve, the angle at which it is cant is given by :

g is the acceleration due to gravity


v = 36.13 m/s
or
v = 36 m/s
So, the maximum speed to stay on the curve in the absence of friction is 36 m/s. Hence, this is the required solution.