1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AfilCa [17]
3 years ago
15

Which waves have wavelengths longer than those of visable light? Give an example

Physics
1 answer:
jarptica [38.1K]3 years ago
7 0
In the attached image, the wavelengths to the right of visible light (starting from IR) have longer wavelengths.

You might be interested in
delivery ladies is Shivam noted at the thundering sound of 6 second after the lightning was seen by him​
vitfil [10]

Answer:

this is due to difference in speeds of sound and light

Explanation:

light has a speed of 3×10^8 m/s and it is seen at once because it takes negligible time due to very high speed and short distance  that is why as soon as lightning occurs we can see it . since thundering sound travels with speed of sound which is about 330  to 340 m/s in air hence it takes some time as described in question as 6 seconds

8 0
2 years ago
Read 2 more answers
A 4.25 kg block is sent up a ramp inclined at an angle theta=37.5° from the horizontal. It is given an initial velocity ????0=15
wel

Answer:

d = 11.79 m

Explanation:

Known data

m=4.25 kg  : mass of the block

θ =37.5°  :angle θ of the ramp with respect to the horizontal direction

μk= 0.460  : coefficient of kinetic friction

g = 9.8 m/s² : acceleration due to gravity

Newton's second law:

∑F = m*a Formula (1)

∑F : algebraic sum of the forces in Newton (N)

m : mass s (kg)

a : acceleration  (m/s²)

We define the x-axis in the direction parallel to the movement of the block on the ramp and the y-axis in the direction perpendicular to it.

Forces acting on the block

W: Weight of the block : In vertical direction

N : Normal force : perpendicular to the ramp

f : Friction force: parallel to the ramp

Calculated of the W

W= m*g

W=  4.25 kg* 9.8 m/s² = 41.65 N

x-y weight components

Wx= Wsin θ= 41.65*sin 37.5° = 25.35 N

Wy= Wcos θ =41.65*cos 37.5° =33.04 N

Calculated of the N

We apply the formula (1)

∑Fy = m*ay    ay = 0

N - Wy = 0

N = Wy

N = 33.04 N

Calculated of the f

f = μk* N= 0.460*33.04

f = 15.2 N

We apply the formula (1) to calculated acceleration of the block:

∑Fx = m*ax  ,  ax= a  : acceleration of the block

-Wx-f = m*a

 -25.35-15.2 = (4.25)*a

-40.55 =  (4.25)*a

a = (-40.55)/ (4.25)

a = -9.54 m/s²

Kinematics of the block

Because the block moves with uniformly accelerated movement we apply the following formula to calculate the final speed of the block :

vf²=v₀²+2*a*d Formula (2)

Where:  

d:displacement  (m)

v₀: initial speed  (m/s)

vf: final speed   (m/s)

Data:

v₀ = 15 m/s

vf = 0

a = -9.54 m/s²

We replace data in the formula (2)  to calculate the distance along the ramp the block reaches before stopping (d)

vf²=v₀²+2*a*d

0 = (15)²+2*(-9.54)*d

2*(9.54)*d =   (15)²

(19.08)*d = 225

d = 225 / (19.08)

d = 11.79 m

3 0
3 years ago
As the temperature increases, materials with
Andrews [41]

Answer:large

Explanation:

As the temperature increases, materials with large coefficients of linear expansion increases a lot in size

7 0
3 years ago
In an elastic head-on collision, a 0.60 kg cart moving at 5.0 m/s [W] collides with a 0.80 kg cart moving at 2.0 m/s [E]. The co
labwork [276]

Answer:

The answer is given below

Explanation:

u is the initial velocity, v is the final velocity. Given that:

m_1=0.6kg,u_1=-5m/s(moving \ west),m_2=0.8kg,u_2=2m/s,k=1200N/m

a)

The final velocity of cart 1 after collision is given as:

v_1=(\frac{m_1-m_2}{m_1+m_2})u_1+\frac{2m_2}{m_1+m_2}u_2\\  Substituting:\\v_1=\frac{0.6-0.8}{0.6+0.8} (-5)+\frac{2*0.8}{0.6+0.8}(2)= 5/7+16/7=3\ m/s

The final velocity of cart 2 after collision is given as:

v_2=(\frac{m_2-m_1}{m_1+m_2})u_2+\frac{2m_1}{m_1+m_2}u_1\\  Substituting:\\v_1=\frac{0.8-0.6}{0.6+0.8} (2)+\frac{2*0.6}{0.6+0.8}(-5)= 2/7-30/7=-4\ m/s

b) Using the law of conservation of energy:

\frac{1}{2}m_1u_1+ \frac{1}{2}m_2u_2=\frac{1}{2}m_1v_1+\frac{1}{2}m_2v_2+\frac{1}{2}kx^2\\x=\sqrt{\frac{m_1u_1+m_2u_2-m_1v_1-m_2v_2}{k}}\\ Substituting\ gives:\\x=\sqrt{\frac{0.6*(-5)^2+0.8*2^2-(0.6*3^2)-(0.8*(-4)^2)}{1200}}=\sqrt{0}=0\ cm

7 0
3 years ago
A series of bright fringes appears on the viewing screen of a Young's double-slit experiment. Suppose you move from one bright f
goblinko [34]
Ahahaha fidjdsd skssjsjsbs SJSU’s
6 0
3 years ago
Other questions:
  • An object initially traveling at a velocity of 52 m/s experiences an acceleration of 9.8 m/s^2 how much time will it take to com
    14·1 answer
  • An airplane flies 21 km in 30 minutes. What is its average speed in kilometers per hour?
    10·2 answers
  • A woman falls to the ground while wearing a parachute. The air resistance of a parachute is 500N. If the woman falls at a consta
    10·1 answer
  • A simple pendulum with a length of 2.23 m and a mass of 6.74 kg is given an initial speed of 2.06 m/s at its equi- librium posit
    13·1 answer
  • An entertainer juggles balls while doing other activities. In one act, she throws a ball vertically upward, and while it is in t
    5·1 answer
  • For any degenerate triplet of states in a 3D infinite potential well, what is the maximum number of electrons allowed?
    15·1 answer
  • Which is greater, the mass of the compounds before a chemical reaction or the mass of the compounds after a chemical reaction?
    9·1 answer
  • Correct unit of speed
    11·2 answers
  • PLEASE HELP :/
    9·1 answer
  • Lithium was one of the metals studied by the American physicist Robert Millikan in his research on the photoelectric effect. Whe
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!