The value of r so the line that passes through (-5,2) and (3,r) has a slope of -1/2 is -2
<u>Solution:</u>
Given that line is passing through point (-5, 2) and (3, r)
Slope of the line is 
Need to determine value of r.
Slope of a line passing through point
is given by following formula:
--- eqn 1

On substituting the given value in (1) we get

Hence the value of "r" is -2
you didnt link the picture
For part A: you will get 3 linear factors (as the degree of the polynomial is 3). perform the division using (x-1) as your known factor and you will get (x-1)(2x²+11x+15). you can then factor the (2x²+11x+15) to get 2x^3 + 9x^2 + 4x - 15 = (x-1)(2x+5)(x+3)
for part B: since 2x+5 will provide the greatest value (assuming x>0) of the 3 factors, then 2x+5=13. solve to get x=4. if x is 4, then the dimensions are 3'x13'x7' [just sub 4 into the x's for each factor]
for part C: as to the graphing calculator, I don't have one. However, if you solve each linear factor for when it is 0, those values will be the x-intercepts. So your graph should cross the x-asix at 1, -5/2, and -3
Answer:
0.28cm/min
Step-by-step explanation:
Given the horizontal trough whose ends are isosceles trapezoid
Volume of the Trough =Base Area X Height
=Area of the Trapezoid X Height of the Trough (H)
The length of the base of the trough is constant but as water leaves the trough, the length of the top of the trough at any height h is 4+2x (See the Diagram)
The Volume of water in the trough at any time


=8h(8+2x)
V=64h+16hx
We are not given a value for x, however we can express x in terms of h from Figure 3 using Similar Triangles
x/h=1/4
4x=h
x=h/4
Substituting x=h/4 into the Volume, V


h=3m,
dV/dt=25cm/min=0.25 m/min

=0.002841m/min =0.28cm/min
The rate is the water being drawn from the trough is 0.28cm/min.
Well,
We can read 9.33 as 9 and 33 hundredths.
In fraction form that would be:

That is already simplest form.
If you meant

, then it would be: