Answer:
B. n-octyl alcohol and 1-octene
Explanation:
Thin-layer chromatography (TLC) is a chromatography technique used to separate non-volatile mixtures. The principle is that different compounds in the sample mixture travel at different rates due to the differences in interactions with stationary phase and due to the differences in solubility in the solvent. The principal chemical property for separation using this technique is molecular polarity
You can intuit than hexadecane and octadecane don't have big polarity differences, also chlorobenzene and bromobenzene haven't.
An alcohol as n-octyl alcohol has different polarity than an alkene as 1-octene.
Thus, using thin layer chromatography is most easy to separate:
<em>B. n-octyl alcohol and 1-octene
</em>
<em></em>
I hope it helps!
<em></em>
Your attempted answer is correct.
Indeed, certain liquids, including water, could superheat when heated in a perfectly smooth container. The superheating could be interrupted by the minutest speck of dust or impurities causing a mass conversion into steam, observed physically as a bumping, causing splashes and endangering operators. Boiling chips introduce these interruptions constantly and ensure a smooth boiling of the liquid.
Answer : The correct option is, (b) 
Explanation :
Complete ionic equation : In complete ionic equation, all the substance that are strong electrolyte and present in an aqueous are represented in the form of ions.
Net ionic equation : In the net ionic equations, we are not include the spectator ions in the equations.
Spectator ions : The ions present on reactant and product side which do not participate in a reactions. The same ions present on both the sides.
The balanced molecular equation will be,

The complete ionic equation in separated aqueous solution will be,

In this equation the species
are the spectator ions.
Hence, the complete ionic equation contains specie is 
Ionic is metal and nonmetal