2.25 I believe
Hope this helped!
STSN
The answers that fit the blanks are SMALL and LITTLE, respectively. The particles or molecules or fas are small which makes it loose and easily moves around, and these only exert little attraction for other gas particles. The answer for this would be option D.
Answer:

Explanation:
We are given that 25 mL of 0.10 M
is titrated with 0.10 M NaOH(aq).
We have to find the pH of solution
Volume of 
Volume of NaoH=0.01 L
Volume of solution =25 +10=35 mL=
Because 1 L=1000 mL
Molarity of NaOH=Concentration OH-=0.10M
Concentration of H+= Molarity of
=0.10 M
Number of moles of H+=Molarity multiply by volume of given acid
Number of moles of H+=
=0.0025 moles
Number of moles of
=0.001mole
Number of moles of H+ remaining after adding 10 mL base = 0.0025-0.001=0.0015 moles
Concentration of H+=
pH=-log [H+]=-log [4.28
]=-log4.28+2 log 10=-0.631+2

Answer:
<h3>1)</h3>
Structure One:
Structure Two:
Structure Three:
Structure Number Two would likely be the most stable structure.
<h3>2)</h3>
- All five C atoms: 0
- All six H atoms to C: 0
- N atom: +1.
The N atom is the one that is "likely" to be attracted to an anion. See explanation.
Explanation:
When calculating the formal charge for an atom, the assumption is that electrons in a chemical bond are shared equally between the two bonding atoms. The formula for the formal charge of an atom can be written as:
.
For example, for the N atom in structure one of the first question,
- N is in IUPAC group 15. There are 15 - 10 = 5 valence electrons on N.
- This N atom is connected to only 1 chemical bond.
- There are three pairs, or 6 electrons that aren't in a chemical bond.
The formal charge of this N atom will be
.
Apply this rule to the other atoms. Note that a double bond counts as two bonds while a triple bond counts as three.
<h3>1)</h3>
Structure One:
Structure Two:
Structure Three:
In general, the formal charge on all atoms in a molecule or an ion shall be as close to zero as possible. That rules out Structure number one.
Additionally, if there is a negative charge on one of the atoms, that atom shall preferably be the most electronegative one in the entire molecule. O is more electronegative than N. Structure two will likely be favored over structure three.
<h3>2)</h3>
Similarly,
- All five C atoms: 0
- All six H atoms to C: 0
- N atom: +1.
Assuming that electrons in a chemical bond are shared equally (which is likely not the case,) the nitrogen atom in this molecule will carry a positive charge. By that assumption, it would attract an anion.
Note that in reality this assumption seldom holds. In this ion, the N-H bond is highly polarized such that the partial positive charge is mostly located on the H atom bonded to the N atom. This example shows how the formal charge assumption might give misleading information. However, for the sake of this particular problem, the N atom is the one that is "likely" to be attracted to an anion.