<u>Answer:</u> The equilibrium concentration of
is 0.332 M
<u>Explanation:</u>
We are given:
Initial concentration of
= 2.00 M
The given chemical equation follows:

<u>Initial:</u> 2.00
<u>At eqllm:</u> 2.00-2x x x
The expression of
for above equation follows:
![K_c=\frac{[CO_2][CF_4]}{[COF_2]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCO_2%5D%5BCF_4%5D%7D%7B%5BCOF_2%5D%5E2%7D)
We are given:

Putting values in above expression, we get:

Neglecting the value of x = 1.25 because equilibrium concentration of the reactant will becomes negative, which is not possible
So, equilibrium concentration of ![COF_2=(2.00-2x)=[2.00-(2\times 0.834)]=0.332M](https://tex.z-dn.net/?f=COF_2%3D%282.00-2x%29%3D%5B2.00-%282%5Ctimes%200.834%29%5D%3D0.332M)
Hence, the equilibrium concentration of
is 0.332 M
B steam causes wheels to turn is correct
Answer:
The scientist is observing an intensive property of a superconductor.
Explanation:
An intensive property is a bulk property of matter. This means that an intensive property does not depend on the amount of substance present in the material under study. Typical examples of intensive properties include; conductivity, resistivity, density, hardness, etc.
An extensive property is a property that depends on the amount of substance present in a sample. Extensive properties depend on the quantity of matter present in the sample under study. Examples of extensive properties include, mass and volume.
Resistance of a superconducting material has nothing to do with the amount of the material present hence it is an intensive property of the superconductor.
Hey there!:
Volume in mL :
1.71 L * 1000 => 1710 mL
Density = 0.921 g/mL
Therefore:
Mass = Density * Volume
Mass = 0.921 * 1710
Mass = 1574.91 g