The correct answer is approximately 11.73 grams of sulfuric acid.
The theoretical yield of water from Al(OH)3 is lower than that of H₂SO₄. As a consequence, Al(OH)3 is the limiting reactant, H₂SO₄ is in excess.
The balanced equation is:
2Al(OH)₃ + 3H₂SO₄ ⇒ Al₂(SO₄)₃ + 6H₂O
Each mole of Al(OH)3 corresponds to 3/2 moles of H₂SO₄. The molecular mass of Al(OH)3 is 78.003 g/mol. There are 15/78.003 = 0.19230 moles of Al(OH)3 in the five grams of Al(OH)3 available. Al(OH)3 is in limiting, which means that all 0.19230 moles will be consumed. Accordingly, 0.19230 × 3/2 = 0.28845 moles of H₂SO₄ will be consumed.
The molar mass of H₂SO₄ is 98.706 g/mol. The mass of 0.28845 moles of H₂SO₄ is 0.28845 × 98.706 = 28.289 g
40 grams of sulfuric acid is available, out of which 28.289 grams is consumed. The remaining 40-28.289 = 11.711 g is in excess, which is closest to the first option, that is, 11.73 grams of H₂SO₄.
Hey Madoudou
The correct answer is option B (sulfate)
The reason is because "Sulfate" has a negative sign.
In order for it to be a cation, it must have positive sign such as "iron(lll)ion
I hope this helps~
Answer:
D
Explanation:
D is the answer because this is the only one having to do with genetics. Fox's genetics changed because it's environment changed.
Answer:
957.7mL
Explanation:
Using the formula below;
CaVa = CbVb
Where;
Ca = concentration of acid (M)
Va = volume of acid (mL)
Cb = concentration of base (M)
Vb = volume of base (mL)
According to the information provided in this question:
Ca = 0.166 M
Cb = 0.013 M
Va = 75mL
Vb = ?
Using CaVa = CbVb
0.166 × 75 = 0.013 × Vb
12.45 = 0.013Vb
Vb =12.45/0.013
Vb = 957.7mL