Answer:
5.03 Naming Compounds that contain Polyatomic Ions
Explanation:
Trust me.
Answer:
m = 700 g
Explanation:
Density:
Density is equal to the mass of substance divided by its volume.
Units:
SI unit of density is Kg/m3.
Other units are given below,
g/cm3, g/mL , kg/L
Formula:
D=m/v
D= density
m=mass
V=volume
Symbol:
The symbol used for density is called rho. It is represented by ρ. However letter D can also be used to represent the density.
Given data:
Density of octane = 0.700 g/cm³
Volume = 1 L
Mass = ?
Formula:
D=m/v
D= density
m=mass
V=volume
First of all we will convert the volume in cm³ because density is given in g/cm³ unit.
1 L = 1000 cm³
Now we will put the values in formula:
d= m/v
m = v × d
m = 1000 cm³ × 0.700 g/cm³
m = 700 g
Since there is loss of kinetic energy
Answer:
215 amu
Explanation:
In the reactants:
There is 1 iron atom, 3 chlorine atoms, 6 hydrogen atoms and 3 oxygen atoms:
- Fe: 56 × 1 = 56
- Cl: 35 × 3 = 105
- H: 1 × 6 = 6
- O: 16 × 3 = 48
56 + 105 + 6 + 48 = 215 amu
Hope this helps!
Answer:
Rate = k . [B]² . [C]
Explanation:
The dependence of the reaction rate on the concentration of the reactants is given by the reaction order of each one, as shown in the rate equation.
![Rate=k.[A]^{x} .[B]^{y} .[C]^{z}](https://tex.z-dn.net/?f=Rate%3Dk.%5BA%5D%5E%7Bx%7D%20.%5BB%5D%5E%7By%7D%20.%5BC%5D%5E%7Bz%7D)
where,
k is the rate constant
x, y, z are the reaction orders.
- <em>The rate of reaction is not affected by changing the concentration of species A.</em> This means that the reaction order for A is x = 0 since when its concentration changes, the rate stays the same.
- <em>Leaving all other factors identical, doubling the concentration of species B increases the rate by a factor of 4.</em> This means that the reaction order for B is y = 2, so when the concentration is doubled, the new rate is 2² = 4 times the initial rate.
- The rate of the reaction is linearly dependent on the concentration of C. This means that the reaction order for C is z = 1, that is, a linear dependence.
All in all, the rate equation is:
Rate = k . [B]² . [C]