You could certainly have some good easy going carefree conversation with your sister or your cousin at dinner or at a movie, but relative dating is not an effective way to get serious and find a life partner.
Answer:
I would say it's B. But just in case here is some information if I'm wrong.
Explanation:
Igneous rocks are very dense and hard. They may have a glassy apprearance. Metamorphic rocks may also have a glassy appearance. You can distinguish these from igneous rocks based on the fact that metamorphic rocks tend to be brittle, lightweight, and an opaque black color.
Hope this helps!
Please mark me Brainliest! :)
The relationship between gravity and pressure in a nebula is that pressure balances gravity. <span>The </span>pressure<span> exerted by a static fluid depends only upon the depth of the fluid, the density of the fluid, and the acceleration of </span><span>gravity. The answer is B. </span>
After one meter, 3.4% of the light is gone ... either soaked up in the fiber
material or escaped from it. So only (100 - 3.4) = 96.6% of the light
remains, to go on to the next meter.
After the second meter, 96.6% of what entered it emerges from it, and
that's 96.6% of 96.6% of the original signal that entered the beginning
of the fiber.
==> After 2 meters, the intensity has dwindled to (0.966)² of its original level.
It's that exponent of ' 2 ' that corresponds to the number of meters that the light
has traveled through.
==> After 'x' meters of fiber, the remaininglight intensity is (0.966) ^x-power
of its original value.
If you shine 1,500 lumens into the front of the fiber, then after 'x' meters of
cable, you'll have
<em>(1,500) · (0.966)^x</em>
lumens of light remaining.
=========================================
The genius engineers in the fiber design industry would not handle it this way.
When they look up the 'attenuation' of the cable in the fiber manufacturer's
catalog, it would say "15dB per 100 meters".
What does that mean ? Break it down: 15dB in 100 meters is <u>0.15dB per meter</u>.
Now, watch this:
Up at the top, the problem told us that the loss in 1 meter is 3.4% . We applied
super high mathematics to that and calculated that 96.6% remains, or 0.966.
Look at this ==> 10 log(0.966) = <em><u>-0.15</u> </em> <== loss per meter, in dB .
Armed with this information, the engineer ... calculating the loss in 'x' meters of
fiber cable, doesn't have to mess with raising numbers to powers. All he has to
do is say ...
-- 0.15 dB loss per meter
-- 'x' meters of cable
-- 0.15x dB of loss.
If 'x' happens to be, say, 72 meters, then the loss is (72) (0.15) = 10.8 dB .
and 10 ^ (-10.8/10) = 10 ^ -1.08 = 0.083 = <em>8.3%</em> <== <u>That's</u> how much light
he'll have left after 72 meters, and all he had to do was a simple multiplication.
Sorry. Didn't mean to ramble on. But I do stuff like this every day.