Answer:
Igneous=B
Sedimentary=C
Metamorphic=A
Weathering is when=B
If sedimentary rock.....=C
Answer:
Mass of heptane = 102g
Vapor pressure of heptane = 454mmHg
Molar mass of heptane = 100.21
No of mole of heptane = mass/molar mass = 102/100.21
No of mole of heptane = 1.0179
Therefore the partial pressure of heptane = no of mole heptane *Vapor pressure of heptane
Partial pressure of heptane = 1.0179*454mmHg
Partial pressure of heptane = 462.1096 = 462mmHg
the partial pressure of heptane vapor above this solution = 462mmHg
Answer: An atom with 6 protons, 5 electrons, and 7 neutrons
Explanation: In this case, neutrons do not matter as they have a charge of 0, or no charge. A proton has a charge of +1 and an electron has a charge of -1. Since there are 6 protons, the total charge of the protons would be +6. Since there are 5 electrons the total charge of the electrons would be -5. +6 - 5 would result in a charge of +1. This means that this atom would have an overall charge of + 1. Basically, if there is one more proton than electron, then the overall charge of the atom will be +1 but if there is one more electron than proton, then the overall charge of the atom will be -1.
Answer:
+1
Explanation:
Na₂O₂
NOTE: the oxidation number of oxygen is always –2 except in peroxides where it is –1.
Thus, we can obtain the oxidation number of sodium (Na) in Na₂O₂ as illustrated below:
Na₂O₂ = 0 (oxidation number of ground state compound is zero)
2Na + 2O = 0
O = –1
2Na + 2(–1) = 0
2Na – 2 = 0
Collect like terms
2Na = 0 + 2
2Na = 2
Divide both side by 2
Na = 2/2
Na = +1
Thus, the oxidation number of sodium (Na) in Na₂O₂ is +1
Answer: A more electronegative atom will have more attraction to the electrons in a chemical bond.
Explanation:
An atom that is able to attract electrons or shared pair of electrons more towards itself is called an electronegative atom.
For example, fluorine is the most electronegative atom.
Due to its high electronegativity it is able to attract an electropositive atom like H towards itself. As a result, both fluorine and hydrogen will acquire stability by sharing of electrons.
Thus, we can conclude that a more electronegative atom will have more attraction to the electrons in a chemical bond.