<u>Answer:</u> The
for the reaction is 72 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)

(2)
( × 2)
(3)
( × 2)
The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[1\times (\Delta H_1)]+[2\times (-\Delta H_2)]+[2\times (\Delta H_3)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B1%5Ctimes%20%28%5CDelta%20H_1%29%5D%2B%5B2%5Ctimes%20%28-%5CDelta%20H_2%29%5D%2B%5B2%5Ctimes%20%28%5CDelta%20H_3%29%5D)
Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(1\times (-1184))+(2\times -(-234))+(2\times (394))]=72kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-1184%29%29%2B%282%5Ctimes%20-%28-234%29%29%2B%282%5Ctimes%20%28394%29%29%5D%3D72kJ)
Hence, the
for the reaction is 72 kJ.
Answer:
Work done, W = 100 J
Explanation:
We have, Billy the friendly Robot uses 50 N of force to lift a box 2 meters in the air.
It is required to find the work done by Billy.
Work done by an object is given in terms of force and displacement. The formula used to find the work done is given by :

So, the work performed by Billy is 100 J.
Answer:
Explanation:
For a fixed mass of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional. Or Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant.
Answer:
The volume of the gas sample at standard pressure is <u>819.5ml</u>
Explanation:
Solution Given:
let volume be V and temperature be T and pressure be P.



1 torr= 1 mmhg
42.2 torr=42.2 mmhg
so,


Now
firstly we need to find the pressure due to gas along by subtracting the vapor pressure of water.

=735-42.2=692.8 mmhg
Now
By using combined gas law equation:



Here
are standard pressure and temperature respectively.
we have

Substituting value, we get


Answer:
d
Explanation:
Generally, it is transported through pipes so I think statement d is incorrect.