<h3>
Answer:</h3>
0.144 moles
<h3>
Explanation:</h3>
- The relationship between mass of a compound, number of moles and molar mass of the compound is given by;
- Number of moles = Mass ÷ Molar mass
- Molar mass is equivalent to the relative formula mass of the compound that is calculated the atomic masses of the elements making the compound.
In this case;
Our compound, KClO3 will have a molar mass of;
= 39 + 35.5 + 4(16)
= 138.5 g/mol
Mass of KClO3 is 20 g
Therefore;
Number of moles = 20 g ÷ 138.5 g/mol
= 0.144 moles
Thus, the number of moles in 20 g of KClO3 is 0.144 moles
The law is approximately valid for real gases at sufficiently low pressures and high temperatures. The specific number of molecules in one gram-mole of a substance, defined as the molecular weight in grams, is 6.02214076 × 1023, a quantity called Avogadro's number, or the Avogadro constant.
Answer:
HCl is the correct answer
According to Raoult's law the relative lowering of vapour pressure of a solution made by dissolving non volatile solute is equal to the mole fraction of the non volatile solute dissolved.
the relative lowering of vapour pressure is the ratio of lowering of vapour pressure and vapour pressure of pure solvent

Where
xB = mole fraction of solute=?

p = 22.8 torr

mole fraction is ratio of moles of solute and total moles of solute and solvent
moles of solvent = mass / molar mass = 500 /18 = 27.78 moles
putting the values




mass of glucose = moles X molar mass = 1.218 X 180 = 219.24 grams
Answer:
Explanation:
None of the statement is true for both chemical and nuclear reactions. In chemical reactions, mass is always conserved and the type of atoms are also conserved.