Answer:
In an elastic collision:
- There is no external net force acting. Thus, Momentum before and after collision is equal. Momentum remains conserved.
- Total energy always remains conserved as energy cannot be created nor destroyed. It can change from one form to another.
- There is no lost due to friction in elastic collision. So the kinetic energy is also conserved.
- Velocities may change after collision. If the masses are equal, the velocities interchange.
When one object is stationary:
Final velocity of object 1:
v₁ = (m₁ - m₂)u₁/(m₁ +m₂)
Final velocity of object 2:
v₂ = (2 m₁ u₁)/(m₁+m₂) =
- Objects do not stick together in elastic collision. They stick together in inelastic collision.
- One object may be stationary before the elastic collision.
Thus, conditions for an elastic collision:
- Energy is conserved.
- Velocities may change.
- Momentum is conserved.
- Kinetic energy is conserved.
- One object may be stationary before the elastic collision.
Answer:
well... when the horse stops/rests, or if it is blocked by a surface or anything of solid background.
Explanation:
If it is going up a hill or slope and it just starts to move that would also be considered the smallest amount of acceleration this can go for many things when it just starts to move. but I would go for when it rests amounting to your fitting of the question.
Answer:
F = 32.28 N
Explanation:
For this exercise we must use the rotational equilibrium relation
Σ τ = 0
In the initial configuration it is in equilibrium, for which all the torque and forces are compensated. By the time the payment lands on the bar, we assume that the counter-clockwise turns are positive.
W_bird L / 2 - F_left 0.595 - F_right 0.595 = 0
we assume that the magnitude of the forces applied by the hands is the same
F_left = F_right = F
W_bird L / 2 - 2 F 0.595 = 0
F =
we calculate
F = 0.560 9.8 14.0 /2.38
F = 32.28 N