Answer:
a) v = 0.7071 v₀, b) v= v₀, c) v = 0.577 v₀, d) v = 1.41 v₀, e) v = 0.447 v₀
Explanation:
The speed of a wave along an eta string given by the expression
v = 
where T is the tension of the string and μ is linear density
a) the mass of the cable is double
m = 2m₀
let's find the new linear density
μ = m / l
iinitial density
μ₀ = m₀ / l
final density
μ = 2m₀ / lo
μ = 2 μ₀
we substitute in the equation for the velocity
initial v₀ =
with the new dough
v =
v = 1 /√2 \sqrt{ \frac{T_o}{ \mu_o} }
v = 1 /√2 v₀
v = 0.7071 v₀
b) we double the length of the cable
If the cable also increases its mass, the relationship is maintained
μ = μ₀
in this case the speed does not change
c) the cable l = l₀ and m = 3m₀
we look for the density
μ = 3m₀ / l₀
μ = 3 m₀/l₀
μ = 3 μ₀
v =
v = 1 /√3 v₀
v = 0.577 v₀
d) l = 2l₀
μ = m₀ / 2l₀
μ = μ₀/ 2
v =
v = √2 v₀
v = 1.41 v₀
e) m = 10m₀ and l = 2l₀
we look for the density
μ = 10 m₀/2l₀
μ = 5 μ₀
we look for speed
v =
v = 1 /√5 v₀
v = 0.447 v₀
Answer:
Water in dal lake is test for any heavy metals and pollutant, sewage and drainage system are also monitored for the same.
Explanation:
- Dal lake is located in Srinagar that is the state capital of Kashmir and is known for recreation and tourism purposes. The area covers about 18 km sq. and forms a part of natural wetlands.
- The lake is prone to pollution and has recently undergone restoration measures. To address the problems of eutrophication algae and large-scale microplankton have been removed from the water.
- The government of India has taken various measures to check the pollution by setting up a committee to monitor the proper use of allotted funds.
Answer:
The higher the frequency, the shorter the wavelength. Because all light waves move through a vacuum at the same speed, the number of wave crests passing by a given point in one second depends on the wavelength. Speed shows how long it takes for wavelengths to travel.
The only thing we know about so far that can shift wavelengths of light
to longer wavelengths is when the source of the light is moving away
from the observer.
When we look at the light from distant galaxies, the light from them is
always shifted to longer wavelengths than it SHOULD have.
AND ... The farther away from us a galaxy IS, the MORE its light is
shifted to wavelengths longer than it should have.
So far, this indicates to us that the whole universe is expanding.
That's the only way to understand what we see, because that's
the only thing we know of that can shift light to longer wavelengths.
By the way ... The most interesting thing about these observations
and measurements is: When astronomers see this light from distant
galaxies and measure the wavelengths, how do they know how far
the wavelengths shifted ? How do they know what the wavelengths
SHOULD be ?
I'll leave you to read about that in the next few years.