<h2>
Answer: x=125m, y=48.308m</h2>
Explanation:
This situation is a good example of the projectile motion or parabolic motion, in which we have two components: x-component and y-component. Being their main equations to find the position as follows:
x-component:
(1)
Where:
is the projectile's initial speed
is the angle
is the time since the projectile is launched until it strikes the target
is the final horizontal position of the projectile (the value we want to find)
y-component:
(2)
Where:
is the initial height of the projectile (we are told it was launched at ground level)
is the final height of the projectile (the value we want to find)
is the acceleration due gravity
Having this clear, let's begin with x (1):
(3)
(4) This is the horizontal final position of the projectile
For y (2):
(5)
(6) This is the vertical final position of the projectile
Answer:
Gases, liquids and solids are all made up of microscopic particles, but the behaviors of these particles differ in the three phases. ... gas are well separated with no regular arrangement. liquid are close together with no regular arrangement. solid are tightly packed, usually in a regular pattern.
<h3>Hope this is fine for you</h3>
Answer: 330.88 J
Explanation:
Given
Linear velocity of the ball, v = 17.1 m/s
Distance from the joint, d = 0.47 m
Moment of inertia, I = 0.5 kgm²
The rotational kinetic energy, KE(rot) of an object is given by
KE(rot) = 1/2Iw²
Also, the angular velocity is given
w = v/r
Firstly, we calculate the angular velocity. Since it's needed in calculating the Kinetic Energy
w = v/r
w = 17.1 / 0.47
w = 36.38 rad/s
Now, substituting the value of w, with the already given value of I in the equation, we have
KE(rot) = 1/2Iw²
KE(rot) = 1/2 * 0.5 * 36.38²
KE(rot) = 0.25 * 1323.5
KE(rot) = 330.88 J
Initial velocity = Vo= 25 m/s
Final velocity = V = x
Acceleration= a = 6 m/s^2
time= t = 4 seconds
Appy the equation:
V = Vo + at
Replacing:
V = 25 + 6(4) = 25 + 24 = 49 m/s
Answer:
I think B
Explanation:
Russia is the largest country on the planet, and due to the immense size it could experience more temperature differences.