Answer:
Tides on our planet are caused by the gravitational pull of the Moon and Sun. Earth's oceans "bulge out" because the Moon's gravity pulls a little harder on one side of our planet (the side closer to the Moon) than it does on the other. The Sun's gravity raises tides, too, but lunar tides are twice as big.
Typically no. Displacement can be in multiple directions as a vector. of something is traveling only along x, then it would be true though this is usually not the case.
If the net force on object A is 5 N and the net force on object B is 10 N, then object B will accelerate more quickly than object A provided the mass of both objects are same.
Answer: Option C
<u>Explanation:
</u>
According to Newton’s second law of motion, any external force applied on an object is directly proportional to the mass and acceleration of the object. In order to state this law in terms of acceleration, it is stated that acceleration exhibited by any object is directly proportional to the net force applied on the object and inversely proportional to the mass of the object as shown below:

So if two objects A and B are identical which means they have same mass, then the acceleration attained by the object will be directly proportionate to the net forces exerted on the objects only.
Thus if the force applied is more for one object, then the object will be exhibiting more acceleration compared to the other one. So as object B is experiencing a net force of 10 N which is greater than the net force experiences by object A, then the object B will be accelerating more quickly compared to the object A's acceleration.
Change in temperature = final temperature - Initial temperature
Δt = t₂ - t₁
Δt = 17 - (-6)
Δt = 17 + 6 = 23 f
In short, Your Answer would be Option D
Hope this helps!