Λ= V/f
<span>but change it to represent the speed of light, c </span>
<span>λ= c/f </span>
<span>c = 3.00 x 10^8 m/s </span>
<span>Plug in your given info and solve for λ(wavelength) </span>
<span>λ= 3.00 x 10^8 m/s / 7.5 x 10^14 Hz
(3.00 x 10^8) / (7.5 x 10^14) = 300,000,000 / 750,000,000,000,000 = 0.0000004
Hope this helps :)
</span>
M/s, km/h, and mph are all used to measure these quantities
Energy captured during the ""photo"" part of photosynthesis is stored in <u>covalent bond</u> during the ""synthesis"" part of the process.
<u>Explanation:</u>
When carbon dioxide, water and sunlight are combindly processed by Plants, algae and a set of bacteria called cyanobacteria to become photoautotrophs, then the process goes is named as Photosynthesis. It generates oxygen, Glyceraldehyde-3-phosphate (G3P), common high-energy carbohydrate molecules which result into glucose, sucrose or other sugar molecules which comprises covalent energy-saving bonds.
Thus the species breakdown these molecules to exhibit energy for cellular functioning. In light-dependent processes, chlorophyll absorbs the radiation from the sunlight and converts it into chemical energy in the form of electron carrier derivatives such as ATP and NADPH. Carbohydrate molecules are constructed from carbon dioxide in light-independent processes i.e in the Calvin cycle, using the chemical energy obtained throughout the light-dependent processes.
Answer:
Under assumption that all food energy that needs the horse is transformed into work, then the horse needs approximately 3 megajoules of food energy to work for 1 hour.
Explanation:
Since horse is working steadily, the power experimented by the horse (
), measured in watts, is at constant rate. Then, the work needed by the horse (
), measured in joules, is equal to that power multiplied by time (
), measured in seconds. That is:
(1)
If we know that
and
, then the work needed for the horse is:



Under assumption that all food energy that needs the horse is transformed into work, then the horse needs approximately 3 megajoules of food energy to work for 1 hour.
Answer:
a) m_ttoal = 40x
, b) m_total = 100X
, c) m_total = 400X
,
d) m_total = 1000 X
Explanation:
La magnificación o aumentos es el incremento de del tamaño de la imagen con respecto al tamaño original del objeto, en la mayoria del os sistema optico la magnificacion total es el producoto de la magnificación del objetivo por la magnificación del ocular
m_total = m_ objetivo * m=ocular
apliquemos esto a nuestro caso
1) m_total = 4 x * 10 x
m_ttoal = 40x
2) m_total = 10X * 10X
m_total = 100X
3)mtotal = 40X * 10X
m_total = 400X
4) m _totla = 100x * 10 X
m_total = 1000 X
en este ultimo caso para magnificación grandes es decalcificar el objeto