Answer:
Explanation:
There are two types of collision.
(a) Elastic collision: When there is no loss of energy during the collision, then the collision is said to be elastic collision.
In case of elastic collision, the momentum is conserved, the kinetic energy is conserved and all the forces are conservative in nature.
The momentum of the system before collision = the momentum of system after collision
The kinetic energy of the system before collision = the kinetic energy after the collision
(b) Inelastic collision: When there is some loss of energy during the collision, then the collision is said to be inelastic collision.
In case of inelastic collision, the momentum is conserved, the kinetic energy is not conserved, the total mechanical energy is conserved and all the forces or some of the forces are non conservative in nature.
The momentum of the system before collision = the momentum of system after collision
The total mechanical energy of the system before collision = total mechanical of the system after the collision
Answer:
B. Objects do not have to touch each other to experience a force.
Explanation:
For example ..One of the noncontact forces is magnetic force whereby a magnetic object will be attracted to another magnetic object of oppsite charged particles, through waves called electromagnetic waves. On the other hand, the two magnetic objects of similar charged particles can repel through electromagnetic waves..
From the activity values and the decay constant, the mass of of Strontium in the sample is:
<h3>What is the decay constant of an element?</h3>
The decay constant of an element is the probability of decay of a nucleus per unit time.
{λ = ln 2 / t1/2
where;
t1/2 is the half-life of the isotope.
The half-life is converted to seconds since the decay constant is asked in per seconds.
Hence;
The activity of the element, A, the decay constant, λ and the number of nuclei, N are related as follows:
Molar mass of Strontium-90 is 90 g.
1 mole of Strontium-90 contains 6.02×10^23 nuclei.
The mass, m of Strontium in the sample is calculated:
Therefore, the mass of of Strontium in the sample is:
Learn more about decay constant at: brainly.com/question/17159453
Here is your answer
REASON :
We know that
Potential difference, V= W/q
where, W is work done
and, q is magnitude of charge
Given,
V= 9.0 v and W= 45 J
So,
using above relation, we get
9= 45/q
q= 45/9
q= 5 coulomb
HOPE IT IS USEFUL