Answer:
B temperature is an indirect measurement of the heat energy in a substance
Explanation:
The concept of temperature can be easily understood by looking at what happens when two objects are placed in contact with each other. By common experience, we know that the hotter object transfers heat energy to the colder object, until the two objects are in thermal equilibrium (= they have same temperature).
Thinking about the example above, we can say therefore that the temperature is an indirect measurement of the heat energy possessed by an object (or substance).
For a monoatomic gas, for instance, we define its internal energy as

where n is the number of moles, R is the gas constant, and T is the absolute temperature. From the formula, we see that the temperature is related to the internal energy of the gas, so measuring the temperature means indirectly measuring its internal energy.
Answer:
The end of the neutral rod which is the closest part to the charged rod would acquire a negative charge.
Explanation:
One of the rods is positively charged and one of them is neutral.
And the important part is that <u>they do not touch one another</u>, but get close to each other.
In this case, the end of the neutral rod which is the closest part to the charged rod would acquire a negative charge. This is because of the Coulomb's Law. The opposite charges exert an attractive force to each other. The positive charges attract the negative charges on the neutral rod.
<u>Explanation:</u>
s = ? u = 0m/s v = ? a = 5m/s² t = 2s
v = u + at
= 0 + (5 x 2)
= 10 m/s
s = ut + 1/2 at²
= (0)(2) + x
x 5 x 2²
= 10 m
Hope this helps!
Answer:
240 ft
Explanation:
t = Time taken
u = Initial velocity = 96 ft/s
v = Final velocity
s = Displacement
a = Acceleration = 12 m/s² on Mars 32 ft/s² on Earth negative due to upward direction
Mars

Earth

Differentiating the first equation with respect to time we get

Equating with zero

Differentiating the second equation with respect to time we get
Equating with zero

Applying the time taken to the above equations, we get


Difference in height = 384-144 = 240 ft
The stone will travel 240 ft higher on Mars
Answer:
vb = 22.13 m/s
So, the only thing that was measured here was the height of point A relative to point B. And the Law of Conservation of Energy was used.
Explanation:
In order to find the speed of roller coaster at Point B, we will use the law of conservation of Energy. In this situation, the law of conservation of energy states that:
K.E at A + P.E at A = K.E at B + P.E at B
(1/2)mvₐ² + mghₐ = (1/2)m(vb)² + mg(hb)
(1/2)vₙ² + ghₐ = (1/2)(vb)² + g(hb)
where,
vₙ = velocity of roller coaster at point a = 0 m/s
hₙ = height of roller coaster at point a = 25 m
g = 9.8 m/s²
vb = velocity of roller coaster at point B = ?
hb = Height of Point B = 0 m (since, point is the reference point)
Therefore,
(1/2)(0 m/s)² + (9.8 m/s²)(25 m) = (1/2)(vb)² + (9.8 m/s²)(0 m)
245 m²/s² * 2 = vb²
vb = √(490 m²/s²)
<u>vb = 22.13 m/s</u>
<u>So, the only thing that was measured here was the height of point A relative to point B. And the Law of Conservation of Energy was used.</u>