Pressure of Butane in the container at 135°C = 1.07 atm
Given:
The H°vap of butane is 24.3 kJ/mol.
starting out at 25 °C
Temperature at the end: 135 °C
2.3 atm of pressure
To Find:
The container's pressure
The perpendicular force per unit area, also known as the stress at a point within a confined fluid, is known as pressure in the physical sciences.
Equation of Clausius-Clapeyron
P2 = 1.07 atm and ln (P2/2.3 atm)
= - 24.3*110/8.31
The pressure in the container at 135°C (ΔH°vap ) is 1.07 atm
Learn more about Pressure here:
brainly.com/question/25736513
#SPJ4
One isotope differs from another in the number of neutrons they have.
From what i read, the answer should be b--false
Answer: Option (3) is the correct answer.
Explanation:
Atomic number of lithium is 3 and its electronic distribution is 2, 1. So, to attain stability it will loose an electron and hence, it forms a single bond.
Atomic number of chlorine is 17 and it has 7 valence electrons. Hence, in order to attain stability it will gain one electron and therefore, it forms a single bond only.
Atomic number of nitrogen is 7 and its electronic distribution is 2, 5. Therefore, to attain stability it needs to gain 3 more electrons. Hence, a nitrogen atom is able to form a triple bond and also it is able to form a double bond.
Hydrogen has atomic number 1 and it attains stability by gaining one electron. Therefore, a hydrogen atoms always forms a single bond.
Atomic number of fluorine is 9 and its electronic distribution is 2, 7. To complete its octet it needs to gain one electron. Hence, a fluorine atom always forms a single bond.
Thus, we can conclude that out of the given options nitrogen is most likely to form multiple (double or triple) bonds.