The answer would be .5 mols because you take the total amount of grams, which is 20, and you had up the molar mass of sodium hydroxide, which would be 40. After you have this you would set this up as a stochiometry equation. With 1 mol on top you dived 20/40 to cancel out your grams. This leaves you with .5 mols
Answer:
A) CH3CH2SH
Explanation:
Dispersion forces are weak attractions found between non-polar and polar molecules. The attractions here can be attributed to the fact that a non-polar molecule sometimes become polar because the constant motion of its electrons may lead to an uneven charge distribution at an instant. If this happens, the molecule has a temporary dipole. This dipole can induce the neighbouring molecules to be distorted and form dipoles as well. The attractions between these dipoles constitute the Dispersion Forces.
Therefore; the greater the molar mass of a compound or molecule, the higher the Dispersion Force. This implies that the compound or molecule with the highest molar mass have the largest dispersion forces.
Now; for option (A)
CH3CH2SH
The molar mass is :
= (12 + (1 × 3 ) +12 + (1 ×2) + 32+1)
= (12 + 3+ 12 + 2 + 32 + 1)
= 62 g/mol
For option (B)
CH3NH2
The molar mass is:
= (12 + (1 × 3 ) +14 + (1 × 2)
= (12 + 3 + 14 + 2)
= 31 g/mol
For option (C)
CH4
The molar mass is :
= 12 + (1 × 4)
= 12 + 4
= 16 g/mol
For option (D)
CH3CH3
The molar mass is :
= 12 + ( 1 × 3 ) + 12 + ( 1 × 3)
= 12 + 3 + 12 + 3
= 30 g/mol
Thus ; option (A) has the highest molar mass, as such the largest dispersion force is A) CH3CH2SH
Density(D) is defined as Mass(M) divided by Volume(V).
The formula for Density is:
D = M / V.
Another way to remember the formula for Density is to remember "Mass per unit of volume".
I hope this helps!
Answer:
Ionic bond is bond between a metal and non metal , metallic bonding happens between positive metals ions and negative electrons in a metal
Explanation:
ionic Bond is the transfer of electrons between a metal and non metal due to strong electrostatic force of attraction between positive metal ions and negative non metal ions
in metallic bonding , there is a force of attraction between positive metal ions and the sea of electrons surrounding it