Answer:
The maximum mass the bar can support without yielding = 32408.26 kg
Explanation:
Yield stress of the material (
) = 200 M Pa
Diameter of the bar = 4.5 cm = 45 mm
We know that yield stress of the bar is given by the formula
Yield Stress = 
⇒
=
---------------- (1)
⇒ Area of the bar (A) =
×
⇒ A =
× 
⇒ A = 1589.625 
Put all the values in equation (1) we get
⇒
= 200 × 1589.625
⇒
= 317925 N
In this bar the
is equal to the weight of the bar.
⇒
=
× g
Where
is the maximum mass the bar can support.
⇒
= 
Put all the values in the above formula we get
⇒
= 
⇒
= 32408.26 Kg
There fore the maximum mass the bar can support without yielding = 32408.26 kg
Answer: 259.2 KJ
Explanation:
The formula calculate work don in a circuit is given by :-
, where Q is charge and V is the potential difference.
The formula to calculate charge in circuit :-
, where I is current and t is time.
Given : Current : 
Potential difference : 
Time : 
Now, 
Then, 
Hence, the work done = 259.2 KJ
Answer:
applying 1st eq of motion vf=vi+at we have to find a=vf-vi/t here a=50-30/2=10 so we got a=10m/s²
Answer:
= 4.3 × 10 ⁻¹⁴ m
Explanation:
The alpha particle will be deflected when its kinetic energy is equal to the potential energy
Charge of the alpha particle q₁= 2 × 1.6 × 10⁻¹⁹ C = 3.2 × 10⁻¹⁹ C
Charge of the gold nucleus q₂= 79 × 1.6 × 10⁻¹⁹ = 1.264 × 10⁻¹⁷C
Kinetic energy of the alpha particle = 5.28 × 10⁶ × 1.602 × 10⁻¹⁹ J ( 1 eV)
= 8.459 × 10⁻¹³
k electrostatic force constant = 9 × 10⁹ N.m²/c²
Kinetic energy = potential energy = k q₁q₂ / r where r is the closest distance the alpha particle got to the gold nucleus
r = ( 9 × 10⁹ N.m²/c² × 3.2 × 10⁻¹⁹ C × 1.264 × 10⁻¹⁷C) / 8.459 × 10⁻¹³
= 4.3 × 10 ⁻¹⁴ m
Question 25 Answer: Destructive interference occurs.
<span>Question 26Answer: The waves are closer together (as they move) because the object is moving toward you.</span>
<span />