Water as it's the highest specific heat capacity
Hope this helps x
Answer:
f = 12 cm
Explanation:
<u>Center of Curvature</u>:
The center of that hollow sphere, whose part is the spherical mirror, is known as the ‘Center of Curvature’ of mirror.
<u>The Radius of Curvature</u>:
The radius of that hollow sphere, whose part is the spherical mirror, is known as the ‘Radius of Curvature’ of mirror. It is the distance from pole to the center of curvature.
<u>Focal Length</u>:
The distance between principal focus and pole is called ‘Focal Length’. It is denoted by ‘F’.
The focal length of the spherical (concave) mirror is approximately equal to half of the radius of curvature:

where,
f = focal length = ?
R = Radius of curvature = 24 cm
Therefore,

<u>f = 12 cm</u>
Explanation:
I'd love to but we cant talk right now cause its 12:22 am here and I'm gonna sleep now lol.
but let's follow each other.
who knows we might be able to help each other.
whaddya say?
have a good day ♡
Answer:
71.85 m/s
Explanation:
Given the following :
Length of skid marks left by jaguar (s) = 290 m
Skidding Acceleration (a) = - 8.90m/s²
Final velocity of jaguar (v) = 0
Speed of Jaguar before it Began to skid =?
Hence, initial speed of jaguar could be obtained using the formula :
v² = u² + 2as
Where
v = final speed of jaguar ; u = initial speed of jaguar(before it Began to skid) ; a = acceleration of jaguar ; s = distance /length of skid marks left by jaguar
0² = u² + (2 × (-8.90) × 290)
0 = u² + (-5,162)
u² = 5162
Take the square root of both sides
u = √5162
u = 71.847 m/s
u = 71.85m/s
The equilibrium conditions allow to find the results for the balance forces are:
When the acceleration is zero we have the equilibrium conditions for both linear and rotational motion.
∑ F = 0
∑ τ = 0
Where F are the forces and τ the torques.
The torque is the product of the force and the perpendicular distance to the point of support,
The free-body diagrams are diagrams of the forces without the details of the bodies, see attached for the free-body diagram of the system.
We write the translational equilibrium condition.
F₁ - W₁ - W₂ + F₂ = 0
We write the equation for the rotational motion, set our point of origin at scale 1, and the counterclockwise turns are positive.
F₂ 2 - W₁ 1 - W₂ 1.5 = 0
Let's calculate F₂
F₂ =
F₂ = (m g + M g 1.5)/ 2
F₂ =
F₂ = 558.6 N
We substitute in the translational equilibrium equation.
F₁ = W₁ + W₂ - F₂
F₁ = (m + M) g - F₂
F₁ = (12 +68) 9.8 - 558.6
F₁ = 225.4 N
In conclusion using the equilibrium conditions we can find the forces of the balance are:
Learn more here: brainly.com/question/12830892