Answer:

Explanation:
Given:
- spring constant of the spring attached to the input piston,

- mass subjected to the output plunger,

<u>Now, the force due to the mass:</u>



<u>Compression in Spring:</u>



or

Line graphs tend to show a change in data over time.
Answer:
Explanation:
B- The red horse's average speed was greater than the black horse's average speed.
Red average speed = 1/120 = 0.00833 mi/s
Black average speed = 1/150 = 0.00667 mi/s
we only know about average speed based on the information given. Either horse could have had higher or lower, even negative, instantaneous speed during some phase of the race.
Answer:
Vi = 24.14 m/s
Explanation:
If we apply Law of Conservation of Energy or Work-Energy Principle here, we get: (neglecting friction)
Loss in K.E of the Rock = Gain in P.E of the Rock
(1/2)(m)(Vi² - Vf²) = mgh
Vi² - Vf² = 2gh
Vi² = Vf² + 2gh
Vi = √(Vf² + 2gh)
where,
Vi = Rock's Speed as it left the ground = ?
Vf = Final Speed = 17 m/s
g = 9.8 m/s²
h = height of rock = 15 m
Therefore,
Vi = √[(17 m/s)² + 2(9.8 m/s²)(15 m)]
Vi = √583 m²/s²
<u>Vi = 24.14 m/s</u>
I think it's D. Options C and D are true. The graph shows an increase in speed from points 6 to 12, which means Option C is true. It shows an even bigger increase in speed from points 24 to 30, and since bikes go faster when traveling downhill, I would think that Option D was correct as well.