Acceleration of the ball is
Explanation:
The acceleration of the ball can be found by using Newton's second law of motion, which states that the net force acting on an object is equal to the product between the mass of the object and its acceleration:
where
F is the net force
m is the mass
a is the acceleration
For the ball in this problem, we have
m = 0.50 kg (mass)
F = 25 N (force)
thereofre, the acceleration of the ball is
Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
Answer:
New Resistance = 0.5556 ohm
Explanation:
Resistance = resistivity * length /area
Here since resistivity and length are constant, we only need to see how the resistance increases or decreases with change in area.
New Area = pi * (3*D)^2 / 4
Old Area = pi * D^2 / 4
The ratio of new area / old area is :
Since area increases 9 times, and it is inversely proportional to resistance:
Resistance decreases by 9 times.
So, old resistance = Voltage / Current = 10 / 2 = 5 ohm
New Resistance = 5 / 9 = 0.5556 ohm (decreases by 9 times)
Answer:
B) 18,000 feet MSL
Explanation:
There are three-dimensional parts in the navigation airspace in the world. The class E airspace is mostly used in the regions with coastal areas that are relatively populated. If we consider certain forms of exceptions, the class E airspace can move in the upward direction to few feet (i.e. 1200 ft). However, this doesn't include 18,000 feet MSL.
Answer:
The summary of the given statement is explained below throughout the explanation segment.
Explanation:
- Drain certain surfaces throughout warm water of such soap during the very first sink. This same sanitizing of bacteria would not destroy whether grime would be in the direction.
- Exfoliate the plates throughout plain water during the secondary drain. As with grime, the residual soap could avoid the kill off bacteria and viruses by the sanitizer.
Answer:
A) coil A
Explanation:
According to Faraday, Induced emf is given as;
E.M.F = ΔФ/t
ΔФ = BACosθ
where;
ΔФ is change in magnetic flux
θ is the angle between the magnetic field, B, and the normal to the loop of area A
A is the area of the loop
B is the magnetic field
From the equation above, induced emf depends on the strength of the magnetic field.
Both coils have the same area and are oriented at right angles to the field.
Coil A has a magnetic field strength of 10-T which is greater than 1 T of coil B, thus, coil A will have a greater emf induced in it.