Answer: 281 hours
Explanation:-
1 electron carry charge=
1 mole of electrons contain=
electrons
Thus 1 mole of electrons carry charge=

of electricity deposits 1 mole or 63.5 g of copper
0.0635 kg of copper is deposited by 193000 Coloumb
11.5 kg of copper is deposited by=
Coloumb

where Q= quantity of electricity in coloumbs = 34952756 C
I = current in amperes = 34.5 A
t= time in seconds = ?


Thus it will take 281 hours to plate 11.5 kg of copper onto the cathode if the current passed through the cell is held constant at 34.5 A.
Answer:
A. 2,3 BPG
Explanation:
2,3-bisphosphoglycerate (BPG), otherwise known as 2,3-DPG, enables the transition of hemoglobin from a very high-oxygen-affinity state to a reduced-oxygen-affinity state.
Tissues hemoglobin oxygen affinity is reduced by numerous physiological factors including.
1. Temperature Increased,
2. Carbon dioxide,
3. Acid and
4. 2,3-Bisphosphoglycerate (2,3-BPG)
all of which can contribute to decrease the oxygen affinity of hemoglobin which favours unloading and increased oxygen availability to our body cells.
Molar mass KCl = 74.55 g/mol
Number of moles:
mass KC / molar mass
149 / 74.55 => 1.998 moles
Volume in liters: 500 mL / 1000 => 0.5 L
Therefore:
M = moles / volume
M = 1.998 / 0.5
M = 3.996 mol/L⁻¹