Bird's eat the strawberries and they transport the seeds in their feces
Answer:
Explanation:
The formula of the reaction:
KClO₂ → KCl + O₂
To assign oxidation numbers, we have to obey some rules:
- Elements in an uncombined state or one whose atoms combine with one another to form molecules have an oxidation number of zero.
- The charge on simple ions signifies their oxidation number.
- The algebraic sum of all the oxidation number of all atoms in a neutral compound is zero. For radicals with charges, their oxidation number is the charge.
The oxidation number of K in KClO₂:
K + (-1) + 2(-2) = 0
K-5 = 0
K = +5
The oxidation number of K in KCl:
K + (-1) = 0
K = +1
The oxidation number Cl in KClO₂ is -1
For Cl in KCl, the oxidation number is -1
For O in KClO₂, the oxidation number is (2 x -2) = -4
For O in O₂, the oxidation number is 0
K moves from an oxidation state of +5 to +1. This is a gain of electrons and K has undergone reduction. We then say K is reduced.
O moves from an oxidation state of -4 to 0. This is a loss of electrons and O has undergone oxidation. We say O is oxidized.
You can calculate the excess reactant by subtracting the mass of excess reagent consumed from the total mass of reagent given therefore,
The answer: Theoretical yield is 121.60 g of NH₃
Excess reactant is H₂
Rate limiting reactant is N₂
explanation: 100 g of Nitrogen
100 g of hydrogen
We are required to identify the theoretical yield of the reaction, the excess reactant and the rate limiting reagent.
We first write the equation for the reaction between nitrogen and hydrogen;
N₂ + 3H₂ → 2NH₃
From the reaction 1 mole of nitrogen reacts with 3 moles of Hydrogen gas.
Secondly we determine the moles of nitrogen gas given and hydrogen gas given;
Moles of Nitrogen gas
Moles = Mass ÷ Molar mass
Molar mass of nitrogen gas = 28.0 g/mol
Moles of Nitrogen gas = 100 g ÷ 28 g/mol 3.57 moles
Moles of Hydrogen gas
Molar mass of Hydrogen gas = 2.02 g/mol
Moles = 100 g ÷ 2.02 g/mol
= 49.50 moles
From the mole ratio given by the equation, 1 mole of nitrogen requires 3 moles of Hydrogen gas.
Thus, 3.57 moles of Nitrogen gas requires (3.57 × 3) 10.71 moles of Hydrogen gas.
This means, Nitrogen gas is the rate limiting reagent and hydrogen gas is the excess reactant.
Third calculate the theoretical yield of the reaction.
1 mole of nitrogen reacts to from 2 moles of ammonia gas
Therefore;
Moles of ammonia gas produced = Moles of nitrogen × 2
= 3.57 moles × 2
= 7.14 moles
But; molar mass of Ammonia gas is = 17.03 g/mol
Therefore;
Mass of ammonia gas produced = 7.14 moles × 17.03 g/mol
= 121.59 g
= 121.60 g
Thus, the theoretical amount of ammonia gas produced is 121.60 g
Sugar is a compound made of carbon, hydrogen and oxygen.