9514 1404 393
Answer:
779.4 square units
Step-by-step explanation:
You seem to have several problems of this type, so we'll derive a formula for the area of an n-gon of radius r.
One central triangle will have a central angle of α = 360°/n. For example, a hexagon has a central angle of α = 360°/6 = 60°. The area of that central triangle is given by the formula ...
A = (1/2)r²sin(α)
Since there are n such triangles, the area of the n-gon is ...
A = (n/2)r²sin(360°/n)
__
For a hexagon (n=6) with radius 10√3, the area is ...
A = (6/2)(10√3)²sin(360°/6) = 450√3 ≈ 779.4 . . . . square units
f(x) = (x + 5)(x - 1)
using the ' factor theorem '
given x = a is the root of a polynomial then (x - a ) is a factor
here roots are x = - 5 and x = 1 hence factors are (x + 5) and (x - 1)
the polynomial is the product of the factors
f(x) = (x + 5)(x - 1)
No because a 2 digit divisor always has less digits than a 3 digit divisor