Answer:
y = 5x - 2 (0, 2) (1, 4) (2, 7) (3, 13)
Step-by-step explanation:
the answer is 23.2558139535
Answer:
A. 84 cm²
Step-by-step explanation:
Surface area of triangular prism = 2(base area) + (Perimeter)*height of prism
Base area = 6 cm² (given)
Perimeter = 12 cm
Altitude = height of prism = 6 cm
Plug in the values into the formula
Surface Area of triangular prism = 2(6) + (12)*6
= 12 + 72
= 84 cm²
Answer:
Integration of I=
=![[\frac{logx}{n+1} x^{(n+1)}]-[\frac{1}{(n+1)^{2}}x^{(n+1)}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7D%20x%5E%7B%28n%2B1%29%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7Dx%5E%7B%28n%2B1%29%7D%5D)
Step-by-step explanation:
Given integral is I= 
Take logx=t





I= 
I= 
Using integration by part,
![I= (t)\int [e^{(n+1)t}]\, dt-\int[\frac{d}{dt}{t}\times\int (e^{(n+1)t})]\\\\I= (t) [\frac{1}{n+1}e^{(n+1)t}]-\int[1\times\frac{1}{n+1}e^{(n+1)t}]\,dt\\\\I=[\frac{t}{n+1}e^{(n+1)t}]-[\frac{1}{(n+1)^{2}}e^{(n+1)t}]](https://tex.z-dn.net/?f=I%3D%20%28t%29%5Cint%20%5Be%5E%7B%28n%2B1%29t%7D%5D%5C%2C%20dt-%5Cint%5B%5Cfrac%7Bd%7D%7Bdt%7D%7Bt%7D%5Ctimes%5Cint%20%28e%5E%7B%28n%2B1%29t%7D%29%5D%5C%5C%5C%5CI%3D%20%28t%29%20%5B%5Cfrac%7B1%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29t%7D%5D-%5Cint%5B1%5Ctimes%5Cfrac%7B1%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29t%7D%5D%5C%2Cdt%5C%5C%5C%5CI%3D%5B%5Cfrac%7Bt%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29t%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7De%5E%7B%28n%2B1%29t%7D%5D)
Writing in terms of x
I=![[\frac{t}{n+1}e^{(n+1)t}]-[\frac{1}{(n+1)^{2}}e^{(n+1)t}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bt%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29t%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7De%5E%7B%28n%2B1%29t%7D%5D)
I=![[\frac{logx}{n+1}e^{(n+1)logx}]-[\frac{1}{(n+1)^{2}}e^{(n+1)logx}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29logx%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7De%5E%7B%28n%2B1%29logx%7D%5D)
I=![[\frac{logx}{n+1}e^{logx^{(n+1)}}]-[\frac{1}{(n+1)^{2}}e^{logx^{(n+1)}}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7De%5E%7Blogx%5E%7B%28n%2B1%29%7D%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7De%5E%7Blogx%5E%7B%28n%2B1%29%7D%7D%5D)
I=![[\frac{logx}{n+1} x^{(n+1)}]-[\frac{1}{(n+1)^{2}}x^{(n+1)}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7D%20x%5E%7B%28n%2B1%29%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7Dx%5E%7B%28n%2B1%29%7D%5D)
Thus,
Integration of I=
=![[\frac{logx}{n+1} x^{(n+1)}]-[\frac{1}{(n+1)^{2}}x^{(n+1)}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7D%20x%5E%7B%28n%2B1%29%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7Dx%5E%7B%28n%2B1%29%7D%5D)
Answer:
For question 1:
The length of hypotenuse expression =√(8^2+9^2)
For question 2:
The expression for length a is
a=√(15^2-4^2)
Step-by-step explanation:
For question 1:
The length of hypotenuse expression =√(8^2+9^2)
For question 2:
Then expression for length a is
a=√(15^2-4^2)