The light coming out of a concave lens will never meet.
So, the answer is A. will never meet.
Happy Studying! ^^
(a)
KE = m v^2 / 2 = (1200 kg)(20 m/s)^2 / 2 = 240,000 J
(b)
The energy is entirely dissipated by the force of friction in the brake system.
(c)
W = delta KE = KEf - KEi = (0 - 240,000) J = -240,000 J
(d)
Fd = delta KE
F = (delta KE) / d = (-240,000 J) / (50 m) = -4800 N
The magnitude of the friction force is 4800 N.
Answer:
W = - 5.01 10¹⁰ J
Explanation:
Work is defined by the expression
W = ∫ F.dr
Where the blacks indicate vectors, in the case the force is radial and the distance is also radial, whereby the scalar producer is reduced to an ordinary product
W = ∫ F dr
W = G m₁m₂ ∫ 1 /r² dr
W = G m₁ m₂2(-1 / r)
We evaluate between the lower limits r = Re and upper r = ∞
W = G m₁m₂ (-1 / Re + 1 / ∞)
W = - G m₁ m₂ / Re
Let's calculate
W = - 6.67 10⁻¹¹ 800 5.98 10²⁴ / 6.37 10⁶
W = - 5.01 10¹⁰ J
(a) The magnitude of the wind as it is measured on the boat will be the result of the two vectors. Since they are at 90°, the resultant can be determined by the Pythagorean theorem.
R = sqrt ((20 knots)² + (17 knots)²)
R = sqrt (400 + 289)
R = 26.24 knots
The direction of the wind will have to be angle between the boat and the resultant.
cos θ = (20 knots)/(26.24 knots)
θ = 40.36°
Hence, the direction is 40.36° east of north.
(b) As stated, the wind is blowing in the direction that is to the east. This means that it only has one direction. Parallel to the motion of the boat, the magnitude of the wind velocity will have to be zero.
Answer:
331.7m/s
Explanation:
Given parameters:
Initial velocity = 100m/s
Acceleration = 50m/s²
Distance = 1km = 1000m
Unknown:
Final velocity = ?
Solution:
To solve this problem, we have to apply the right motion equation shown below;
v² = u² + 2aS
v is the final velocity
u is the initial velocity
a is the acceleration
S is the distance
Now insert the parameters and solve;
v² = 100² + (2 x 50 x 1000)
v² = 110000
v = √110000 = 331.7m/s