If the sphere is positively charged, the positive rod is repelled by the sphere while the negative rod is attracted by the sphere.
<h3>What is an electrical charge?</h3>
An electrical charge can be positive or negative. From the laws of electrostatics, unlike charges attract while like charges repel. As such the effect observed when the rods are individually brought near the sphere will decide the charge on the sphere.
If the sphere is neutral, there is no effect observed when each rod is brought near the sphere. If the sphere is positively charged, the positive rod is repelled by the sphere while the negative rod is attracted by the sphere.
Learn more about electrostatics: brainly.com/question/9774180
This is a problem of conservation of momentum
Momentum before throwing the rock: m*V = 96.0 kg * 0.480 m/s = 46.08 N*s
A) man throws the rock forward
=>
rock:
m1 = 0.310 kg
V1 = 14.5 m/s, in the same direction of the sled with the man
sled and man:
m2 = 96 kg - 0.310 kg = 95.69 kg
v2 = ?
Conservation of momentum:
momentum before throw = momentum after throw
46.08N*s = 0.310kg*14.5m/s + 95.69kg*v2
=> v2 = [46.08 N*s - 0.310*14.5N*s ] / 95.69 kg = 0.434 m/s
B) man throws the rock backward
this changes the sign of the velocity, v2 = -14.5 m/s
46.08N*s = - 0.310kg*14.5m/s + 95.69kg*v2
v2 = [46.08 N*s + 0.310*14.5 N*s] / 95.69 k = 0.529 m/s
Answer:
No.
Explanation:
Electromagnetic waves do not require a medium of matter to move through, electromagnetic waves are used in things like your cell phone and telecommunications.
NH4OH is the answer. Hope this helps you.
Answer:
a) 0.568 kg
b) 474 kg/m³
Explanation:
Given:
Inner radius = 8.82 cm = 0.0882 m
Outer radius = 9.91 cm = 0.0991 m
Density of the liquid = 948.00 Kg/m³
a) The volume of the sphere =
or
volume of sphere = 0.0012 m³
also, volume of half sphere =
or
volume of half sphere =
or
Volume of half sphere =0.0006 m³
Now, from the Archimedes principle
Mass of the sphere = Weight of the volume of object submerged
or
Mass of the sphere = 0.0006× 948.00 = 0.568 kg
b) Now, density =
or
Density =
or
Density = 474 kg/m³