Hi there!

We can use the following conversions to solve:
Total mass --> amount of mols --> amount of atoms (Avogadro's number)
Begin by calculating the amount of boron trifluoride in 3.61 grams:
3.61 g * (1 mol BF₃ / 67.8 g) ≈ 0.0532 mol BF₃
Use avogadro's number to convert:
0.0532 mol * 6.02× 10²³atoms / 1 mol = 3.203 × 10²² atoms
Answer:
This flexible ability is important because it allows the cell to survive in differing environments, such as when immersed in water over long periods of time.
Answer:
5.0 38 84.0 749.7 528.0 729.0 738.9 739.0
DNA testing which I think is the largest breakthrough.
Answer: Option (b) is the correct answer.
Explanation:
When there are more number of hydroxide ions in a solution then there will be high concentration of
or hydroxide ions. As a result, more will be the strength of base in that particular solution.
A base is strong when it readily dissociate into its ions in the solution. When a base is strong, then it does not matter at what concentration it is dissolved in the solution because despite of its low concentration it will remain a strong base.
Thus, we can conclude that out of the given options, the statement even at low concentrations, a strong base is strong best relates the strength and concentration of a base.