The solutions to the given system of equations is (0, -6) and (1, -5)
<h3>Simultaneous equations</h3>
From the question, we are to determine the solutions to the given system of equations
The equations are
x − y = 6 --------- (1)
y = x² −6 ---------- (2)
From equation (1)
x - y = 6
∴ x = 6 + y ------- (3)
Substitute into equation (2)
y = x² −6
y = (6+y)² −6
y = (6+y)(6+y) -6
y = 36 + 6y + 6y +y² -6
y = 36 + 12y + y² - 6
Simplifying
y² + 12y - y + 30 = 0
y² + 11y + 30 = 0
Solve quadratically
y² + 11y + 30 = 0
y² + 6y + 5y + 30 = 0
y(y +6) +5 (y +6) = 0
(y + 5)(y + 6) = 0
y + 5 = 0 OR y + 6 = 0
y = -5 OR y = -6
Substitute the values of y into equation (3)
x = 6 + y
When y = -5
x = 6 + (-5)
x = 6 -5
x = 1
When y = -6
x = 6 + (-6)
x = 6 -6
x = 0
∴ When x = 0, y = -6 and when x = 1, y = -5
Hence, the solutions to the given system of equations is (0, -6) and (1, -5)
Learn more on Solving simultaneous equations here: brainly.com/question/16863577
#SPJ!
Just cross multiply basically divide
![\bf \qquad \qquad \textit{Future Value of an ordinary annuity} \\\\ A=pymnt\left[ \cfrac{\left( 1+\frac{r}{n} \right)^{nt}-1}{\frac{r}{n}} \right]](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7BFuture%20Value%20of%20an%20ordinary%20annuity%7D%0A%5C%5C%5C%5C%0AA%3Dpymnt%5Cleft%5B%20%5Ccfrac%7B%5Cleft%28%201%2B%5Cfrac%7Br%7D%7Bn%7D%20%5Cright%29%5E%7Bnt%7D-1%7D%7B%5Cfrac%7Br%7D%7Bn%7D%7D%20%5Cright%5D)
![\bf \begin{cases} A= \begin{array}{llll} \textit{original amount}\\ \textit{already compounded} \end{array} & \begin{array}{llll} \end{array}\\ pymnt=\textit{periodic payments}\to & \begin{array}{llll} 485\cdot 12\\ \underline{5280} \end{array}\\ r=rate\to 6\%\to \frac{6}{100}\to &0.06\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{a year, thus once} \end{array}\to &1\\ t=years\to &4 \end{cases} \\\\\\ ](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%0AA%3D%0A%5Cbegin%7Barray%7D%7Bllll%7D%0A%5Ctextit%7Boriginal%20amount%7D%5C%5C%0A%5Ctextit%7Balready%20compounded%7D%0A%5Cend%7Barray%7D%20%26%0A%5Cbegin%7Barray%7D%7Bllll%7D%0A%0A%5Cend%7Barray%7D%5C%5C%0Apymnt%3D%5Ctextit%7Bperiodic%20payments%7D%5Cto%20%26%0A%5Cbegin%7Barray%7D%7Bllll%7D%0A485%5Ccdot%2012%5C%5C%0A%5Cunderline%7B5280%7D%0A%5Cend%7Barray%7D%5C%5C%0Ar%3Drate%5Cto%206%5C%25%5Cto%20%5Cfrac%7B6%7D%7B100%7D%5Cto%20%260.06%5C%5C%0An%3D%0A%5Cbegin%7Barray%7D%7Bllll%7D%0A%5Ctextit%7Btimes%20it%20compounds%20per%20year%7D%5C%5C%0A%5Ctextit%7Ba%20year%2C%20thus%20once%7D%0A%5Cend%7Barray%7D%5Cto%20%261%5C%5C%0A%0At%3Dyears%5Cto%20%264%0A%5Cend%7Bcases%7D%0A%5C%5C%5C%5C%5C%5C%0A)
![\bf A=5280\left[ \cfrac{\left( 1+\frac{0.06}{1} \right)^{1\cdot 4}-1}{\frac{0.06}{1}} \right]](https://tex.z-dn.net/?f=%5Cbf%20A%3D5280%5Cleft%5B%20%5Ccfrac%7B%5Cleft%28%201%2B%5Cfrac%7B0.06%7D%7B1%7D%20%5Cright%29%5E%7B1%5Ccdot%20%204%7D-1%7D%7B%5Cfrac%7B0.06%7D%7B1%7D%7D%20%5Cright%5D)
Joe is making $485 payments monthly, but the amount gets interest on a yearly basis, not monthly, so the amount that yields interest is 485*12
also, keep in mind, we're assuming is compound interest, as opposed to simple interest
A rational number can always be represented as a fraction.
5.2 = 52/10
5.5 = 55/10
A number between them would be 54/10 since 54 is between 52 and 55.
An irrational number cannot be represented as a fraction. A good example of an irrational number is the square root of a number.
sqrt(5.2^2) = 5.2 ----> 5.2^2 = 27.04
sqrt(5.5^2) = 5.5 ----> 5.5^2 = 30.25
The square root of a number between 27.04 and 30.25 will be an irrational number between 5.2 and 5.5
sqrt(28) = 5.2915...